-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathload_d4rl_data.py
42 lines (35 loc) · 1.68 KB
/
load_d4rl_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gym
import d4rl
import os
import numpy as np
from data_container import DATA
if not os.path.exists("./offline_data"):
os.makedirs("./offline_data")
for env_name in ["hopper-medium-v0", "halfcheetah-medium-v0",
"hopper-medium-v2", "halfcheetah-medium-v2"]:
dataset_name = "offline_data/d4rl-" + env_name
env = gym.make(env_name)
dataset = env.get_dataset()
N = dataset['observations'].shape[0]
dataset['next_observations'] = np.copy(dataset['observations'])
dataset['next_observations'][0:N - 1, :] = dataset['next_observations'][1:N, :]
dataset['observations'] = dataset['observations'][~dataset['timeouts'], :]
dataset['actions'] = dataset['actions'][~dataset['timeouts'], :]
dataset['next_observations'] = dataset['next_observations'][~dataset['timeouts'], :]
dataset['rewards'] = dataset['rewards'][~dataset['timeouts']]
dataset['not_done'] = 1.0 - dataset['terminals'][~dataset['timeouts']].astype(np.float)
print(len(dataset['observations']),
len(dataset['actions']),
len(dataset['next_observations']),
len(dataset['rewards']),
len(dataset['not_done']))
replay_buffer = DATA(env.observation_space.shape[0], env.action_space.shape[0],
"cpu", len(dataset['observations']))
replay_buffer.state = dataset['observations']
replay_buffer.action = dataset['actions']
replay_buffer.next_state = dataset['next_observations']
replay_buffer.reward[:, 0] = dataset['rewards']
replay_buffer.not_done[:, 0] = dataset['not_done']
replay_buffer.size = len(dataset['observations'])
replay_buffer.ptr = replay_buffer.size
replay_buffer.save(dataset_name)