-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmlp.hpp
79 lines (60 loc) · 2.39 KB
/
mlp.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#pragma once
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
cv::Mat oneHotEncode(const cv::Mat& labels, const int numClasses)
{
cv::Mat output(labels.rows, numClasses, CV_32F, 0.0f); // all zero, initially
const int* labelsPtr = labels.ptr<int>(0);
for (int i=0; i<labels.rows; i++)
{
float* outputPtr = output.ptr<float>(i);
int id = labelsPtr[i];
outputPtr[id] = 1.f;
}
return output;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
void trainMLP(const cv::Ptr<cv::ml::TrainData> &dataset)
{
auto mlp = cv::ml::ANN_MLP::create();
int nFeatures = dataset->getNVars();
int nClasses = 10;
cv::Mat_<int> layers(4,1);
layers(0) = nFeatures; // input
layers(1) = nClasses * 32; // hidden
layers(2) = nClasses * 16; // hidden
layers(3) = nClasses; // output,
mlp->setLayerSizes(layers);
mlp->setActivationFunction(cv::ml::ANN_MLP::SIGMOID_SYM, 0, 0);
mlp->setTermCriteria(cv::TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 500, 0.0001));
mlp->setTrainMethod(cv::ml::ANN_MLP::BACKPROP, 0.0001);
cv::Mat trainData = dataset->getTrainSamples();
cv::Mat trainLabels = dataset->getTrainResponses();
trainLabels = oneHotEncode(trainLabels, nClasses);
mlp->train(trainData, cv::ml::ROW_SAMPLE, trainLabels);
mlp->save("MLP.xml");
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
float testMLP(const cv::Ptr<cv::ml::TrainData> &dataset)
{
auto mlp = cv::ml::ANN_MLP::load("MLP.xml");
auto testSamples = dataset->getTestSamples();
auto testResponses = dataset->getTestResponses();
cv::Mat result;
mlp->predict(testSamples, result);
float error = 0.f;
for(int i=0; i<result.rows; ++i)
{
double minVal, maxVal;
int minIdx, maxIdx;
cv::minMaxIdx(result.row(i).t(), &minVal, &maxVal, &minIdx, &maxIdx);
int prediction = maxIdx;
int testResponse = testResponses.at<int>(i);
if(prediction != testResponse)
error += 1.f;
}
error /= testSamples.rows;
return error*100;
}