-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_html.py
857 lines (770 loc) · 34.5 KB
/
save_html.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
import warnings
from enum import Enum
from typing import Any, Iterable, List, Optional, Tuple, Union
import numpy as np
from matplotlib import cm, colors, pyplot as plt
from matplotlib.collections import LineCollection
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.figure import Figure
from matplotlib.pyplot import axis, figure
from mpl_toolkits.axes_grid1 import make_axes_locatable
from numpy import ndarray
try:
from IPython.display import display, HTML
HAS_IPYTHON = True
except ImportError:
HAS_IPYTHON = False
class ImageVisualizationMethod(Enum):
heat_map = 1
blended_heat_map = 2
original_image = 3
masked_image = 4
alpha_scaling = 5
class TimeseriesVisualizationMethod(Enum):
overlay_individual = 1
overlay_combined = 2
colored_graph = 3
class VisualizeSign(Enum):
positive = 1
absolute_value = 2
negative = 3
all = 4
def _prepare_image(attr_visual: ndarray):
return np.clip(attr_visual.astype(int), 0, 255)
def _normalize_scale(attr: ndarray, scale_factor: float):
assert scale_factor != 0, "Cannot normalize by scale factor = 0"
if abs(scale_factor) < 1e-5:
warnings.warn(
"Attempting to normalize by value approximately 0, visualized results"
"may be misleading. This likely means that attribution values are all"
"close to 0."
)
attr_norm = attr / scale_factor
return np.clip(attr_norm, -1, 1)
def _cumulative_sum_threshold(values: ndarray, percentile: Union[int, float]):
# given values should be non-negative
assert percentile >= 0 and percentile <= 100, (
"Percentile for thresholding must be " "between 0 and 100 inclusive."
)
sorted_vals = np.sort(values.flatten())
cum_sums = np.cumsum(sorted_vals)
threshold_id = np.where(cum_sums >= cum_sums[-1] * 0.01 * percentile)[0][0]
return sorted_vals[threshold_id]
def _normalize_attr(
attr: ndarray,
sign: str,
outlier_perc: Union[int, float] = 2,
reduction_axis: Optional[int] = None,
):
attr_combined = attr
if reduction_axis is not None:
attr_combined = np.sum(attr, axis=reduction_axis)
# Choose appropriate signed values and rescale, removing given outlier percentage.
if VisualizeSign[sign] == VisualizeSign.all:
threshold = _cumulative_sum_threshold(np.abs(attr_combined), 100 - outlier_perc)
elif VisualizeSign[sign] == VisualizeSign.positive:
attr_combined = (attr_combined > 0) * attr_combined
threshold = _cumulative_sum_threshold(attr_combined, 100 - outlier_perc)
elif VisualizeSign[sign] == VisualizeSign.negative:
attr_combined = (attr_combined < 0) * attr_combined
threshold = -1 * _cumulative_sum_threshold(
np.abs(attr_combined), 100 - outlier_perc
)
elif VisualizeSign[sign] == VisualizeSign.absolute_value:
attr_combined = np.abs(attr_combined)
threshold = _cumulative_sum_threshold(attr_combined, 100 - outlier_perc)
else:
raise AssertionError("Visualize Sign type is not valid.")
return _normalize_scale(attr_combined, threshold)
def visualize_image_attr(
attr: ndarray,
original_image: Union[None, ndarray] = None,
method: str = "heat_map",
sign: str = "absolute_value",
plt_fig_axis: Union[None, Tuple[figure, axis]] = None,
outlier_perc: Union[int, float] = 2,
cmap: Union[None, str] = None,
alpha_overlay: float = 0.5,
show_colorbar: bool = False,
title: Union[None, str] = None,
fig_size: Tuple[int, int] = (6, 6),
use_pyplot: bool = True,
):
r"""
Visualizes attribution for a given image by normalizing attribution values
of the desired sign (positive, negative, absolute value, or all) and displaying
them using the desired mode in a matplotlib figure.
Args:
attr (numpy.ndarray): Numpy array corresponding to attributions to be
visualized. Shape must be in the form (H, W, C), with
channels as last dimension. Shape must also match that of
the original image if provided.
original_image (numpy.ndarray, optional): Numpy array corresponding to
original image. Shape must be in the form (H, W, C), with
channels as the last dimension. Image can be provided either
with float values in range 0-1 or int values between 0-255.
This is a necessary argument for any visualization method
which utilizes the original image.
Default: None
method (str, optional): Chosen method for visualizing attribution.
Supported options are:
1. `heat_map` - Display heat map of chosen attributions
2. `blended_heat_map` - Overlay heat map over greyscale
version of original image. Parameter alpha_overlay
corresponds to alpha of heat map.
3. `original_image` - Only display original image.
4. `masked_image` - Mask image (pixel-wise multiply)
by normalized attribution values.
5. `alpha_scaling` - Sets alpha channel of each pixel
to be equal to normalized attribution value.
Default: `heat_map`
sign (str, optional): Chosen sign of attributions to visualize. Supported
options are:
1. `positive` - Displays only positive pixel attributions.
2. `absolute_value` - Displays absolute value of
attributions.
3. `negative` - Displays only negative pixel attributions.
4. `all` - Displays both positive and negative attribution
values. This is not supported for `masked_image` or
`alpha_scaling` modes, since signed information cannot
be represented in these modes.
Default: `absolute_value`
plt_fig_axis (tuple, optional): Tuple of matplotlib.pyplot.figure and axis
on which to visualize. If None is provided, then a new figure
and axis are created.
Default: None
outlier_perc (float or int, optional): Top attribution values which
correspond to a total of outlier_perc percentage of the
total attribution are set to 1 and scaling is performed
using the minimum of these values. For sign=`all`, outliers
and scale value are computed using absolute value of
attributions.
Default: 2
cmap (str, optional): String corresponding to desired colormap for
heatmap visualization. This defaults to "Reds" for negative
sign, "Blues" for absolute value, "Greens" for positive sign,
and a spectrum from red to green for all. Note that this
argument is only used for visualizations displaying heatmaps.
Default: None
alpha_overlay (float, optional): Alpha to set for heatmap when using
`blended_heat_map` visualization mode, which overlays the
heat map over the greyscaled original image.
Default: 0.5
show_colorbar (bool, optional): Displays colorbar for heatmap below
the visualization. If given method does not use a heatmap,
then a colormap axis is created and hidden. This is
necessary for appropriate alignment when visualizing
multiple plots, some with colorbars and some without.
Default: False
title (str, optional): Title string for plot. If None, no title is
set.
Default: None
fig_size (tuple, optional): Size of figure created.
Default: (6,6)
use_pyplot (bool, optional): If true, uses pyplot to create and show
figure and displays the figure after creating. If False,
uses Matplotlib object oriented API and simply returns a
figure object without showing.
Default: True.
Returns:
2-element tuple of **figure**, **axis**:
- **figure** (*matplotlib.pyplot.figure*):
Figure object on which visualization
is created. If plt_fig_axis argument is given, this is the
same figure provided.
- **axis** (*matplotlib.pyplot.axis*):
Axis object on which visualization
is created. If plt_fig_axis argument is given, this is the
same axis provided.
Examples::
>>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
>>> # and returns an Nx10 tensor of class probabilities.
>>> net = ImageClassifier()
>>> ig = IntegratedGradients(net)
>>> # Computes integrated gradients for class 3 for a given image .
>>> attribution, delta = ig.attribute(orig_image, target=3)
>>> # Displays blended heat map visualization of computed attributions.
>>> _ = visualize_image_attr(attribution, orig_image, "blended_heat_map")
"""
# Create plot if figure, axis not provided
if plt_fig_axis is not None:
plt_fig, plt_axis = plt_fig_axis
else:
if use_pyplot:
plt_fig, plt_axis = plt.subplots(figsize=fig_size)
else:
plt_fig = Figure(figsize=fig_size)
plt_axis = plt_fig.subplots()
if original_image is not None:
if np.max(original_image) <= 1.0:
original_image = _prepare_image(original_image * 255)
else:
assert (
ImageVisualizationMethod[method] == ImageVisualizationMethod.heat_map
), "Original Image must be provided for any visualization other than heatmap."
# Remove ticks and tick labels from plot.
plt_axis.xaxis.set_ticks_position("none")
plt_axis.yaxis.set_ticks_position("none")
plt_axis.set_yticklabels([])
plt_axis.set_xticklabels([])
plt_axis.grid(b=False)
heat_map = None
# Show original image
if ImageVisualizationMethod[method] == ImageVisualizationMethod.original_image:
if len(original_image.shape) > 2 and original_image.shape[2] == 1:
original_image = np.squeeze(original_image, axis=2)
plt_axis.imshow(original_image)
else:
# Choose appropriate signed attributions and normalize.
norm_attr = _normalize_attr(attr, sign, outlier_perc, reduction_axis=2)
# Set default colormap and bounds based on sign.
if VisualizeSign[sign] == VisualizeSign.all:
default_cmap = LinearSegmentedColormap.from_list(
"RdWhGn", ["red", "white", "green"]
)
vmin, vmax = -1, 1
elif VisualizeSign[sign] == VisualizeSign.positive:
default_cmap = "Greens"
vmin, vmax = 0, 1
elif VisualizeSign[sign] == VisualizeSign.negative:
default_cmap = "Reds"
vmin, vmax = 0, 1
elif VisualizeSign[sign] == VisualizeSign.absolute_value:
default_cmap = "Blues"
vmin, vmax = 0, 1
else:
raise AssertionError("Visualize Sign type is not valid.")
cmap = cmap if cmap is not None else default_cmap
# Show appropriate image visualization.
if ImageVisualizationMethod[method] == ImageVisualizationMethod.heat_map:
heat_map = plt_axis.imshow(norm_attr, cmap=cmap, vmin=vmin, vmax=vmax)
elif (
ImageVisualizationMethod[method]
== ImageVisualizationMethod.blended_heat_map
):
plt_axis.imshow(np.mean(original_image, axis=2), cmap="gray")
heat_map = plt_axis.imshow(
norm_attr, cmap=cmap, vmin=vmin, vmax=vmax, alpha=alpha_overlay
)
elif ImageVisualizationMethod[method] == ImageVisualizationMethod.masked_image:
assert VisualizeSign[sign] != VisualizeSign.all, (
"Cannot display masked image with both positive and negative "
"attributions, choose a different sign option."
)
plt_axis.imshow(
_prepare_image(original_image * np.expand_dims(norm_attr, 2))
)
elif ImageVisualizationMethod[method] == ImageVisualizationMethod.alpha_scaling:
assert VisualizeSign[sign] != VisualizeSign.all, (
"Cannot display alpha scaling with both positive and negative "
"attributions, choose a different sign option."
)
plt_axis.imshow(
np.concatenate(
[
original_image,
_prepare_image(np.expand_dims(norm_attr, 2) * 255),
],
axis=2,
)
)
else:
raise AssertionError("Visualize Method type is not valid.")
# Add colorbar. If given method is not a heatmap and no colormap is relevant,
# then a colormap axis is created and hidden. This is necessary for appropriate
# alignment when visualizing multiple plots, some with heatmaps and some
# without.
if show_colorbar:
axis_separator = make_axes_locatable(plt_axis)
colorbar_axis = axis_separator.append_axes("bottom", size="5%", pad=0.1)
if heat_map:
plt_fig.colorbar(heat_map, orientation="horizontal", cax=colorbar_axis)
else:
colorbar_axis.axis("off")
if title:
plt_axis.set_title(title)
if use_pyplot:
plt.show()
return plt_fig, plt_axis
def visualize_image_attr_multiple(
attr: ndarray,
original_image: Union[None, ndarray],
methods: List[str],
signs: List[str],
titles: Union[None, List[str]] = None,
fig_size: Tuple[int, int] = (8, 6),
use_pyplot: bool = True,
**kwargs: Any,
):
r"""
Visualizes attribution using multiple visualization methods displayed
in a 1 x k grid, where k is the number of desired visualizations.
Args:
attr (numpy.ndarray): Numpy array corresponding to attributions to be
visualized. Shape must be in the form (H, W, C), with
channels as last dimension. Shape must also match that of
the original image if provided.
original_image (numpy.ndarray, optional): Numpy array corresponding to
original image. Shape must be in the form (H, W, C), with
channels as the last dimension. Image can be provided either
with values in range 0-1 or 0-255. This is a necessary
argument for any visualization method which utilizes
the original image.
methods (list[str]): List of strings of length k, defining method
for each visualization. Each method must be a valid
string argument for method to visualize_image_attr.
signs (list[str]): List of strings of length k, defining signs for
each visualization. Each sign must be a valid
string argument for sign to visualize_image_attr.
titles (list[str], optional): List of strings of length k, providing
a title string for each plot. If None is provided, no titles
are added to subplots.
Default: None
fig_size (tuple, optional): Size of figure created.
Default: (8, 6)
use_pyplot (bool, optional): If true, uses pyplot to create and show
figure and displays the figure after creating. If False,
uses Matplotlib object oriented API and simply returns a
figure object without showing.
Default: True.
**kwargs (Any, optional): Any additional arguments which will be passed
to every individual visualization. Such arguments include
`show_colorbar`, `alpha_overlay`, `cmap`, etc.
Returns:
2-element tuple of **figure**, **axis**:
- **figure** (*matplotlib.pyplot.figure*):
Figure object on which visualization
is created. If plt_fig_axis argument is given, this is the
same figure provided.
- **axis** (*matplotlib.pyplot.axis*):
Axis object on which visualization
is created. If plt_fig_axis argument is given, this is the
same axis provided.
Examples::
>>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
>>> # and returns an Nx10 tensor of class probabilities.
>>> net = ImageClassifier()
>>> ig = IntegratedGradients(net)
>>> # Computes integrated gradients for class 3 for a given image .
>>> attribution, delta = ig.attribute(orig_image, target=3)
>>> # Displays original image and heat map visualization of
>>> # computed attributions side by side.
>>> _ = visualize_image_attr_multiple(attribution, orig_image,
>>> ["original_image", "heat_map"], ["all", "positive"])
"""
assert len(methods) == len(signs), "Methods and signs array lengths must match."
if titles is not None:
assert len(methods) == len(titles), (
"If titles list is given, length must " "match that of methods list."
)
if use_pyplot:
plt_fig = plt.figure(figsize=fig_size)
else:
plt_fig = Figure(figsize=fig_size)
plt_axis = plt_fig.subplots(1, len(methods))
# When visualizing one
if len(methods) == 1:
plt_axis = [plt_axis]
for i in range(len(methods)):
visualize_image_attr(
attr,
original_image=original_image,
method=methods[i],
sign=signs[i],
plt_fig_axis=(plt_fig, plt_axis[i]),
use_pyplot=False,
title=titles[i] if titles else None,
**kwargs,
)
plt_fig.tight_layout()
if use_pyplot:
plt.show()
return plt_fig, plt_axis
def visualize_timeseries_attr(
attr: ndarray,
data: ndarray,
x_values: Optional[ndarray] = None,
method: str = "individual_channels",
sign: str = "absolute_value",
channel_labels: Optional[List[str]] = None,
channels_last: bool = True,
plt_fig_axis: Union[None, Tuple[figure, axis]] = None,
outlier_perc: Union[int, float] = 2,
cmap: Union[None, str] = None,
alpha_overlay: float = 0.7,
show_colorbar: bool = False,
title: Union[None, str] = None,
fig_size: Tuple[int, int] = (6, 6),
use_pyplot: bool = True,
**pyplot_kwargs,
):
r"""
Visualizes attribution for a given timeseries data by normalizing
attribution values of the desired sign (positive, negative, absolute value,
or all) and displaying them using the desired mode in a matplotlib figure.
Args:
attr (numpy.ndarray): Numpy array corresponding to attributions to be
visualized. Shape must be in the form (N, C) with channels
as last dimension, unless `channels_last` is set to True.
Shape must also match that of the timeseries data.
data (numpy.ndarray): Numpy array corresponding to the original,
equidistant timeseries data. Shape must be in the form
(N, C) with channels as last dimension, unless
`channels_last` is set to true.
x_values (numpy.ndarray, optional): Numpy array corresponding to the
points on the x-axis. Shape must be in the form (N, ). If
not provided, integers from 0 to N-1 are used.
Default: None
method (str, optional): Chosen method for visualizing attributions
overlaid onto data. Supported options are:
1. `overlay_individual` - Plot each channel individually in
a separate panel, and overlay the attributions for each
channel as a heat map. The `alpha_overlay` parameter
controls the alpha of the heat map.
2. `overlay_combined` - Plot all channels in the same panel,
and overlay the average attributions as a heat map.
3. `colored_graph` - Plot each channel in a separate panel,
and color the graphs according to the attribution
values. Works best with color maps that does not contain
white or very bright colors.
Default: `overlay_individual`
sign (str, optional): Chosen sign of attributions to visualize.
Supported options are:
1. `positive` - Displays only positive pixel attributions.
2. `absolute_value` - Displays absolute value of
attributions.
3. `negative` - Displays only negative pixel attributions.
4. `all` - Displays both positive and negative attribution
values.
Default: `absolute_value`
channel_labels (list[str], optional): List of labels
corresponding to each channel in data.
Default: None
channels_last (bool, optional): If True, data is expected to have
channels as the last dimension, i.e. (N, C). If False, data
is expected to have channels first, i.e. (C, N).
Default: True
plt_fig_axis (tuple, optional): Tuple of matplotlib.pyplot.figure and axis
on which to visualize. If None is provided, then a new figure
and axis are created.
Default: None
outlier_perc (float or int, optional): Top attribution values which
correspond to a total of outlier_perc percentage of the
total attribution are set to 1 and scaling is performed
using the minimum of these values. For sign=`all`, outliers
and scale value are computed using absolute value of
attributions.
Default: 2
cmap (str, optional): String corresponding to desired colormap for
heatmap visualization. This defaults to "Reds" for negative
sign, "Blues" for absolute value, "Greens" for positive sign,
and a spectrum from red to green for all. Note that this
argument is only used for visualizations displaying heatmaps.
Default: None
alpha_overlay (float, optional): Alpha to set for heatmap when using
`blended_heat_map` visualization mode, which overlays the
heat map over the greyscaled original image.
Default: 0.7
show_colorbar (bool): Displays colorbar for heat map below
the visualization.
title (str, optional): Title string for plot. If None, no title is
set.
Default: None
fig_size (tuple, optional): Size of figure created.
Default: (6,6)
use_pyplot (bool): If true, uses pyplot to create and show
figure and displays the figure after creating. If False,
uses Matplotlib object oriented API and simply returns a
figure object without showing.
Default: True.
pyplot_kwargs: Keyword arguments forwarded to plt.plot, for example
`linewidth=3`, `color='black'`, etc
Returns:
2-element tuple of **figure**, **axis**:
- **figure** (*matplotlib.pyplot.figure*):
Figure object on which visualization
is created. If plt_fig_axis argument is given, this is the
same figure provided.
- **axis** (*matplotlib.pyplot.axis*):
Axis object on which visualization
is created. If plt_fig_axis argument is given, this is the
same axis provided.
Examples::
>>> # Classifier takes input of shape (batch, length, channels)
>>> model = Classifier()
>>> dl = DeepLift(model)
>>> attribution = dl.attribute(data, target=0)
>>> # Pick the first sample and plot each channel in data in a separate
>>> # panel, with attributions overlaid
>>> visualize_timeseries_attr(attribution[0], data[0], "overlay_individual")
"""
# Check input dimensions
assert len(attr.shape) == 2, "Expected attr of shape (N, C), got {}".format(
attr.shape
)
assert len(data.shape) == 2, "Expected data of shape (N, C), got {}".format(
attr.shape
)
# Convert to channels-first
if channels_last:
attr = np.transpose(attr)
data = np.transpose(data)
num_channels = attr.shape[0]
timeseries_length = attr.shape[1]
if num_channels > timeseries_length:
warnings.warn(
"Number of channels ({}) greater than time series length ({}), "
"please verify input format".format(num_channels, timeseries_length)
)
num_subplots = num_channels
if (
TimeseriesVisualizationMethod[method]
== TimeseriesVisualizationMethod.overlay_combined
):
num_subplots = 1
attr = np.sum(attr, axis=0) # Merge attributions across channels
if x_values is not None:
assert (
x_values.shape[0] == timeseries_length
), "x_values must have same length as data"
else:
x_values = np.arange(timeseries_length)
# Create plot if figure, axis not provided
if plt_fig_axis is not None:
plt_fig, plt_axis = plt_fig_axis
else:
if use_pyplot:
plt_fig, plt_axis = plt.subplots(
figsize=fig_size, nrows=num_subplots, sharex=True
)
else:
plt_fig = Figure(figsize=fig_size)
plt_axis = plt_fig.subplots(nrows=num_subplots, sharex=True)
if not isinstance(plt_axis, ndarray):
plt_axis = np.array([plt_axis])
norm_attr = _normalize_attr(attr, sign, outlier_perc, reduction_axis=None)
# Set default colormap and bounds based on sign.
if VisualizeSign[sign] == VisualizeSign.all:
default_cmap = LinearSegmentedColormap.from_list(
"RdWhGn", ["red", "white", "green"]
)
vmin, vmax = -1, 1
elif VisualizeSign[sign] == VisualizeSign.positive:
default_cmap = "Greens"
vmin, vmax = 0, 1
elif VisualizeSign[sign] == VisualizeSign.negative:
default_cmap = "Reds"
vmin, vmax = 0, 1
elif VisualizeSign[sign] == VisualizeSign.absolute_value:
default_cmap = "Blues"
vmin, vmax = 0, 1
else:
raise AssertionError("Visualize Sign type is not valid.")
cmap = cmap if cmap is not None else default_cmap
cmap = cm.get_cmap(cmap)
cm_norm = colors.Normalize(vmin, vmax)
def _plot_attrs_as_axvspan(attr_vals, x_vals, ax):
half_col_width = (x_values[1] - x_values[0]) / 2.0
for icol, col_center in enumerate(x_vals):
left = col_center - half_col_width
right = col_center + half_col_width
ax.axvspan(
xmin=left,
xmax=right,
facecolor=(cmap(cm_norm(attr_vals[icol]))),
edgecolor=None,
alpha=alpha_overlay,
)
if (
TimeseriesVisualizationMethod[method]
== TimeseriesVisualizationMethod.overlay_individual
):
for chan in range(num_channels):
plt_axis[chan].plot(x_values, data[chan, :], **pyplot_kwargs)
if channel_labels is not None:
plt_axis[chan].set_ylabel(channel_labels[chan])
_plot_attrs_as_axvspan(norm_attr[chan], x_values, plt_axis[chan])
plt.subplots_adjust(hspace=0)
elif (
TimeseriesVisualizationMethod[method]
== TimeseriesVisualizationMethod.overlay_combined
):
# Dark colors are better in this case
cycler = plt.cycler("color", cm.Dark2.colors)
plt_axis[0].set_prop_cycle(cycler)
for chan in range(num_channels):
if channel_labels is not None:
label = channel_labels[chan]
else:
label = None
plt_axis[0].plot(x_values, data[chan, :], label=label, **pyplot_kwargs)
_plot_attrs_as_axvspan(norm_attr, x_values, plt_axis[0])
plt_axis[0].legend(loc="best")
elif (
TimeseriesVisualizationMethod[method]
== TimeseriesVisualizationMethod.colored_graph
):
for chan in range(num_channels):
points = np.array([x_values, data[chan, :]]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
lc = LineCollection(segments, cmap=cmap, norm=cm_norm, **pyplot_kwargs)
lc.set_array(norm_attr[chan, :])
plt_axis[chan].add_collection(lc)
plt_axis[chan].set_ylim(
1.2 * np.min(data[chan, :]), 1.2 * np.max(data[chan, :])
)
if channel_labels is not None:
plt_axis[chan].set_ylabel(channel_labels[chan])
plt.subplots_adjust(hspace=0)
else:
raise AssertionError("Invalid visualization method: {}".format(method))
plt.xlim([x_values[0], x_values[-1]])
if show_colorbar:
axis_separator = make_axes_locatable(plt_axis[-1])
colorbar_axis = axis_separator.append_axes("bottom", size="5%", pad=0.4)
colorbar_alpha = alpha_overlay
if (
TimeseriesVisualizationMethod[method]
== TimeseriesVisualizationMethod.colored_graph
):
colorbar_alpha = 1.0
plt_fig.colorbar(
cm.ScalarMappable(cm_norm, cmap),
orientation="horizontal",
cax=colorbar_axis,
alpha=colorbar_alpha,
)
if title:
plt_axis[0].set_title(title)
if use_pyplot:
plt.show()
return plt_fig, plt_axis
# These visualization methods are for text and are partially copied from
# experiments conducted by Davide Testuggine at Facebook.
class VisualizationDataRecord:
r"""
A data record for storing attribution relevant information
"""
__slots__ = [
"word_attributions",
"pred_prob",
"pred_class",
"true_class",
"attr_class",
"attr_score",
"raw_input_ids",
"convergence_score",
]
def __init__(
self,
word_attributions,
pred_prob,
pred_class,
true_class,
attr_class,
attr_score,
raw_input_ids,
convergence_score,
) -> None:
self.word_attributions = word_attributions
self.pred_prob = pred_prob
self.pred_class = pred_class
self.true_class = true_class
self.attr_class = attr_class
self.attr_score = attr_score
self.raw_input_ids = raw_input_ids
self.convergence_score = convergence_score
def _get_color(attr):
# clip values to prevent CSS errors (Values should be from [-1,1])
attr = max(-1, min(1, attr))
if attr > 0:
hue = 120
sat = 75
lig = 100 - int(50 * attr)
else:
hue = 0
sat = 75
lig = 100 - int(-40 * attr)
return "hsl({}, {}%, {}%)".format(hue, sat, lig)
def format_classname(classname):
return '<td><text style="padding-right:2em"><b>{}</b></text></td>'.format(classname)
def format_special_tokens(token):
if token.startswith("<") and token.endswith(">"):
return "#" + token.strip("<>")
return token
def format_tooltip(item, text):
return '<div class="tooltip">{item}\
<span class="tooltiptext">{text}</span>\
</div>'.format(
item=item, text=text
)
def format_word_importances(words, importances):
if importances is None or len(importances) == 0:
return "<td></td>"
assert len(words) <= len(importances)
tags = ["<td>"]
for word, importance in zip(words, importances[: len(words)]):
word = format_special_tokens(word)
color = _get_color(importance)
unwrapped_tag = '<mark style="background-color: {color}; opacity:1.0; \
line-height:1.75"><font color="black"> {word}\
</font></mark>'.format(
color=color, word=word
)
tags.append(unwrapped_tag)
tags.append("</td>")
return "".join(tags)
def get_html(
datarecords: Iterable[VisualizationDataRecord], legend: bool = True
) -> "HTML": # In quotes because this type doesn't exist in standalone mode
assert HAS_IPYTHON, (
"IPython must be available to visualize text. "
"Please run 'pip install ipython'."
)
dom = ["<table width: 100%>"]
rows = [
"<tr><th>True Label</th>"
"<th>Predicted Label</th>"
"<th>Attribution Label</th>"
"<th>Attribution Score</th>"
"<th>Word Importance</th>"
]
for datarecord in datarecords:
rows.append(
"".join(
[
"<tr>",
format_classname(datarecord.true_class),
format_classname(
"{0} ({1:.2f})".format(
datarecord.pred_class, datarecord.pred_prob
)
),
format_classname(datarecord.attr_class),
format_classname("{0:.2f}".format(datarecord.attr_score)),
format_word_importances(
datarecord.raw_input_ids, datarecord.word_attributions
),
"<tr>",
]
)
)
if legend:
dom.append(
'<div style="border-top: 1px solid; margin-top: 5px; \
padding-top: 5px; display: inline-block">'
)
dom.append("<b>Legend: </b>")
for value, label in zip([-1, 0, 1], ["Negative", "Neutral", "Positive"]):
dom.append(
'<span style="display: inline-block; width: 10px; height: 10px; \
border: 1px solid; background-color: \
{value}"></span> {label} '.format(
value=_get_color(value), label=label
)
)
dom.append("</div>")
dom.append("".join(rows))
dom.append("</table>")
html = HTML("".join(dom))
return html