We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
# 一、向量、矩阵、数组 # 1. 向量 # 数值型向量 a<- c(2,5,8,3,9) # 字符型向量 b<- c("甲","乙","丙","丁") # 逻辑型向量 c<- c("TRUE", "FALSE","FALSE") # 运行向量,并显示结果 a;b;c # 同一个向量中的元素只能是同一类型的数据,不能混杂 # 2. 矩阵 # 用matrix函数创建矩阵 # 生成1~6的数值向量 a <- 1:6 # 创建向量a的矩阵 # 矩阵行数为2,列数为3 # 按行填充矩阵的元素 mat <-matrix(a, nrow = 2, ncol= 3, byrow = TRUE) # 显示结果 mat # 显示结果中,逗号在前表示为列 # 给矩阵mat添加行名 row.names(mat) = c("甲", "乙") colnames(mat) = c("A", "B", "C") mat # 3. 数组 # 数组和矩阵类似,但是维数可以大于2 # 用array函数创建2 X 3 X 4的数组 # 第1个纬度 dim1 <-c("男","女") # 第2个纬度 dim2 <-c("赞成","中立","反对") dim3 <-c("东部","西部","南部","北部") # 第3个纬度 # 随机生成24个均匀的随机数,大小范围为50~100,并取整 data <-round(runif(24,50,100)) # 创建数组,并赋值给对象d d <-array(data, c(2,3,4),dimnames=list(dim1,dim2,dim3)) d # 二、数据框 # 1. 创建数据框 # 写入姓名和分数 names <-c("刘","王","赵","钱","孙") stat <-c(68,85,74,88,63) math <-c(85,91,74,100,82) econ <-c(84,61,63,49,89) # 将向量组织成数据框形式 table1_1 <-data.frame(学生姓名=names,统计学=stat,数学=math,经济学=econ) table1_1 # 显示前三行 head(table1_1, 3) # 显示后三行 tail(table1_1, 3) # 查看数据框对象结构 str(table1_1) # 查看对象类型 class(table1_1) # 查看行数 nrow(table1_1) # 查看列数 ncol(table1_1) # 同时查看行数和列数 dim(table1_1) # 2. 数据框的合并 table1_2 <- table1_1 # 按行合并数据框 my_table <-rbind(table1_1,table1_2) my_table # 按特定的列合并数据框 # 将table1_2的第2列和第三列,合并到new_table里 new_table <-cbind(table1_1, table1_2[, 2:3]) new_table # 3.数据框排序 # 默认升序排列 sort(table1_1$学生姓名) # 降序排列 sort(table1_1$统计学, decreasing = TRUE) # 按姓名升序排序整个数据框 install.packages("dplyr") library(dplyr) arrange(table1_1, 学生姓名) # 按数学分数降序对整个数据框排序 arrange(table1_1, desc(数学)) # 三、因子和列表 # 1. 因子 # 在R中,类别变量被称为因子factor,而因子的取值被称为水平level # 将无序因子转换为数值 # 因子向量a a <-c("金融","地产","医药","医药","金融","医药") # 将向量a编码为因子 f <-factor(a) # 将因子a转换为数值 as.numeric(f) # 将无序因子转换为有序因子,或数值 b <-c("很好","好","一般","差","很差") # 将因子向量b转换为有序因子 f <-factor(b, ordered = TRUE, levels = c("很好","好","一般","差","很差")) as.numeric(f) # 2. 列表 # 列表是对象的集合,而对象的类型可以是向量、矩阵、数据框等
The text was updated successfully, but these errors were encountered:
No branches or pull requests
The text was updated successfully, but these errors were encountered: