-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathGrounding_bbox_pretrain.py
231 lines (179 loc) · 8.67 KB
/
Grounding_bbox_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import argparse
import copy
import os
import sys
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
import math
from pathlib import Path
import torch
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.optim import Optimizer
from models import load_pretrained
from models.model_bbox_pretrain import XVLM
import utils
from dataset import create_dataset
from scheduler import create_scheduler
from optim import create_optimizer
from utils.checkpointer import Checkpointer
from utils.hdfs_io import hmkdir, hcopy, hexists
from accelerators.apex_ddp_accelerator import ApexDDPAccelerator
def reinit_scheduler_properties_mysched(optimizer: Optimizer, scheduler, cfg) -> None:
"""
with ApexDDP, do re-init to avoid lr_scheduler warning.
issue: https://github.com/pytorch/pytorch/issues/27595
issue: https://github.com/PyTorchLightning/pytorch-lightning/issues/841
"""
args = cfg
if scheduler.optimizer == optimizer:
# from transformers import get_linear_schedule_with_warmup
def lr_lambda(current_step: int):
if current_step < args.num_warmup_steps:
return float(current_step) / float(max(1, args.num_warmup_steps))
return max(
0.0, float(args.num_training_steps - current_step) / float(
max(1, args.num_training_steps - args.num_warmup_steps))
)
scheduler.__init__(optimizer, lr_lambda, last_epoch=-1)
def train(model, dataloader, optimizer, epoch_info, device, scheduler, config, accelerator, checkpointer):
# train
model.train()
start_epoch, _ = epoch_info
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss_bbox', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
metric_logger.add_meter('loss_giou', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
header = 'Train step: [{}]'.format(start_epoch)
print_freq = 50
world_size = utils.get_world_size()
step_per_epoch = math.ceil(config['train_dataset_size']/(config['batch_size']*world_size))
assert step_per_epoch > 1
global_step = 0 # start from 0
for i, region_batch in enumerate(metric_logger.log_every(dataloader, print_freq, header, step_per_epoch, epoch_info)):
image, region_batch = region_batch[0].to(device, non_blocking=True), [
t.to(device) if t is not None else None for t in region_batch[1:]]
idx_to_group_img, text_ids, text_atts, _, _, _, _, target_bbox, is_image = region_batch
if config['calc_image_bbox_loss']:
is_image = None
optimizer.zero_grad()
loss_bbox, loss_giou = model(image, text_ids=text_ids, text_atts=text_atts,
idx_to_group_img=idx_to_group_img, target_bbox=target_bbox, is_image=is_image)
loss = loss_bbox + loss_giou
accelerator.backward_step(loss, optimizer)
accelerator_clip_grad_norm = float(config['accelerator']['CLIP_GRAD_NORM'])
if accelerator_clip_grad_norm > 0:
accelerator.optimizer_step(optimizer, model, accelerator_clip_grad_norm)
optimizer.step()
scheduler.step()
metric_logger.update(loss_bbox=loss_bbox.item())
metric_logger.update(loss_giou=loss_giou.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if utils.is_main_process():
if (global_step+1) % step_per_epoch == 0:
current_epoch = global_step // step_per_epoch
train_stats = {k: "{:.5f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': current_epoch,
}
with open("log.txt", "a") as f:
f.write(json.dumps(log_stats) + "\n")
global_step += 1
if utils.is_main_process():
model_without_ddp = model
if hasattr(model, 'module'):
model_without_ddp = model.module
save_obj = {
'model': model_without_ddp.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'lr_scheduler': scheduler.state_dict(),
'config': config,
# 'epoch': current_epoch,
}
checkpointer.save_checkpoint(model_state=save_obj,
epoch='latest',
training_states=optimizer.state_dict())
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.5f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
config['train_file_regions'] = ','.join(config['train_file_regions'])
config['batch_size'] = config['regions']['batch_size']
if utils.is_main_process():
print(f"### train_file_regions: {config['train_file_regions']}")
sys.stdout.flush()
world_size = utils.get_world_size()
if world_size > 8:
# you can comment out this assertion if you run the two scripts manually
assert args.output_dir.startswith('hdfs') and hexists(args.output_dir), \
"to read ckpt for each node when running Grounding_bbox.py subsequently"
# fix the seed
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
print("Creating dataset")
dataset = create_dataset('grounding_bbox_pretrain', config)
loader = torch.utils.data.DataLoader(dataset, batch_size=config['regions']['max_images'],
num_workers=config['regions']['num_workers'],
pin_memory=True,
drop_last=False,
collate_fn=dataset.collate_fn)
print("Creating model")
model = XVLM(config=config)
# print(model)
model.load_pretrained(args.checkpoint, config)
model = model.to(device)
print("### Total Params: ", sum(p.numel() for p in model.parameters() if p.requires_grad))
rank = int(os.environ.get('RANK', 0))
local_rank = int(os.environ.get('LOCAL_RANK', 0))
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config['schedular'])
arg_sche['step_per_epoch'] = math.ceil(config['train_dataset_size'] / (config['batch_size'] * world_size))
lr_scheduler = create_scheduler(arg_sche, optimizer)
arg_acc = utils.AttrDict(config['accelerator'])
accelerator = ApexDDPAccelerator(arg_acc, logger=None)
model, optimizer, lr_scheduler = accelerator.set_up(model, optimizer, lr_scheduler, local_rank, world_size, rank)
reinit_scheduler_properties_mysched(optimizer, lr_scheduler, arg_sche)
checkpointer = Checkpointer(args.output_dir)
print("### output_dir, ", args.output_dir, flush=True)
print("Start training")
start_time = time.time()
start_epoch = 0
max_epoch = config['schedular']['epochs']
epoch_info = (start_epoch, max_epoch)
train(model, loader, optimizer, epoch_info, device, lr_scheduler, config,
accelerator, checkpointer)
dist.barrier()
if utils.is_main_process():
os.system("cat log.txt")
hcopy('log.txt', args.output_dir)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('### Time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--checkpoint', type=str, required=True)
parser.add_argument('--output_dir', type=str, default='output/bbox_pretrain')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', action='store_false')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
hmkdir(args.output_dir)
yaml.dump(config, open('config.yaml', 'w'))
hcopy('config.yaml', args.output_dir)
main(args, config)