-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_test.py
186 lines (149 loc) · 5.37 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# -*- coding: utf-8 -*-
"""
@Author : Chan ZiWen
@Date : 2022/11/3 16:57
File Description:
"""
import glob
import os
import torch
import time
from PIL import Image
from sklearn.model_selection import train_test_split
from torchvision import transforms
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
# from models.mobilevit import MobileViT
from models.myconvnet import ConvNet
# show unzip dir
train_dir = '/mnt/chenziwen/Datasets/dc/train'
test_dir = '/mnt/chenziwen/Datasets/dc/test'
print('len:', len(os.listdir(train_dir)), len(os.listdir(test_dir)))
batch_size = 256
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)
torch.manual_seed(1234)
if device == 'cuda':
torch.cuda.manual_seed_all(1234)
lr = 0.001
train_list = glob.glob(os.path.join(train_dir, '*.jpg'))
test_list = glob.glob(os.path.join(test_dir, '*.jpg'))
print('show data:', len(train_list), train_list[:3])
print('show data:', len(test_list), test_list[:3])
train_list, val_list = train_test_split(train_list, test_size=0.2)
print(len(train_list), train_list[:3])
print(len(val_list), val_list[:3])
train_transforms = transforms.Compose([
transforms.Resize((272, 272)),
transforms.RandomCrop((256, 256)),
transforms.ToTensor(),
])
val_transforms = transforms.Compose([
transforms.Resize((272, 272)),
transforms.CenterCrop((256, 256)),
transforms.ToTensor(),
])
test_transforms = transforms.Compose([
transforms.Resize((272, 272)),
transforms.CenterCrop((256, 256)),
transforms.ToTensor(),
])
class dataset(Dataset):
def __init__(self, file_list, now_transform):
self.file_list = file_list # list of path
self.transform = now_transform
def __len__(self):
self.filelength = len(self.file_list)
return self.filelength
def __getitem__(self, idx):
img_path = self.file_list[idx]
img = Image.open(img_path)
# print(img.size)
img_transformed = self.transform(img)
# test 没有标签?
label = img_path.split('/')[-1].split('.')[0]
if label == 'dog':
label = 1
elif label == 'cat':
label = 0
else:
assert False
return img_transformed, label
train_data = dataset(train_list, train_transforms)
val_data = dataset(val_list, test_transforms)
# test_data = dataset(test_list, transform=test_transforms)
train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True, num_workers=8)
val_loader = DataLoader(dataset=val_data, batch_size=batch_size, shuffle=False, num_workers=8)
# test_loader = torch.utils.data.DataLoader(dataset = test_data, batch_size=batch_size, shuffle=True)
print(len(train_data), len(train_loader))
print(len(val_data), len(val_loader))
args = {
'num_classes': 2,
'dims': [64, 80, 96],
'transformer_blocks': [2, 4, 3],
'channels': [16, 16, 24, 24, 48, 64, 80, 320],
'expansion': 2,
'finetune': "/mnt/chenziwen/cv/capreg/checkpoints/mobilevit_xxs.pt",
'classifier_dropout': 0.1,
'ffn_dropout': 0.0,
'attn_dropout': 0.0,
'dropout': 0.05,
'number_heads': 4,
'no_fuse_local_global_features': False,
'conv_kernel_size': 3,
'patch_size': 2,
'activation': "swish",
'normalization_name': "batch_norm_2d",
'normalization_momentum': 0.1,
'global_pool': "mean",
'conv_init': "kaiming_normal",
'linear_init': "trunc_normal",
'linear_init_std_dev': 0.02
}
# model = MobileViT(args['dims'], args['channels'], args['num_classes'], args['transformer_blocks'], args['expansion'],
# args['conv_kernel_size'], args['patch_size'], args['number_heads'], args)
model = ConvNet(args).to(device)
optimizer = optim.Adam(params=model.parameters(), lr=lr)
loss_f = nn.CrossEntropyLoss()
epochs = 100
print('start epoch iter, please wait...')
for epoch in range(epochs):
epoch_loss = 0
epoch_accuracy = 0
model.train()
best_acc = 0.65
s = time.time()
print('train')
for data, label in train_loader:
data = data.to(device)
label = label.to(device)
output = model(data)
loss = loss_f(output, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc = ((output.argmax(dim=1) == label).float().mean())
epoch_accuracy += acc / len(train_loader)
epoch_loss += loss / len(train_loader)
print('-', end=' ')
print('\nEpoch : {}, train accuracy : {}, train loss : {}, time: {}'.format(
epoch + 1, epoch_accuracy, epoch_loss, time.time() - s))
s = time.time()
model.eval()
with torch.no_grad():
epoch_val_accuracy = 0
epoch_val_loss = 0
for data, label in val_loader:
data = data.to(device)
label = label.to(device)
val_output = model(data)
val_loss = loss_f(val_output, label)
acc = ((val_output.argmax(dim=1) == label).float().mean())
epoch_val_accuracy += acc / len(val_loader)
epoch_val_loss += val_loss / len(val_loader)
if epoch_val_accuracy > best_acc:
best_acc = epoch_val_accuracy
torch.save(model.state_dict(), '/mnt/chenziwen/cv/capreg/mobilevit_xxs_dc.pt')
print(' : , val_accuracy : {}, val_loss : {}, time: {}'.format(
epoch + 1, epoch_val_accuracy, epoch_val_loss, time.time()-s))