Skip to content

Latest commit

 

History

History
246 lines (161 loc) · 23.5 KB

readme.md

File metadata and controls

246 lines (161 loc) · 23.5 KB

Azure IoT C SDKs and Libraries

Build Status

The Azure IOT Hub Device SDK allows applications written in C99 or later or C++ to communicate easily with Azure IoT Hub, Azure IoT Central and to Azure IoT Device Provisioning. This repo includes the source code for the libraries, setup instructions, and samples demonstrating use scenarios.

For constained devices - where memory is measured in kilobytes and not megabytes - there are even lighter weight SDK options available. See Other Azure IoT SDKs for more.

Table of Contents

Getting the SDK

The simplest way to get started with the Azure IoT SDKs on supported platforms is to use the following packages and libraries:

For other platforms - including Linux - you need to clone and build the SDK directly. You may also build it directly for the platforms above. Instructions can be found here.

Samples

There are many samples available for the SDK. More information can be found here.

SDK API Reference Documentation

The API reference documentation for the C SDKs can be found here.

Other Azure IoT SDKs

To find Azure IoT SDKs in other languages, please refer to the guidance here.

Note on constrained devices: The Embedded C SDK is an alternative for constrained devices which enables the BYO (bring your own) network approach: IoT developers have the freedom of choice to bring an MQTT client, TLS and Socket of their choice to create a device solution. Find more information about the Embedded C SDK here.

Developing Azure IoT Applications

To learn more about building Azure IoT Applications, you can visit the Azure IoT Dev Center.

Key Features

Device Client SDK

IoT Hub supports multiple protocols for the device to connect with : MQTT, AMQP, and HTTPS. MQTT and AMQP can optionally run over WebSockets. The Device Client SDK allows the protocol to be chosen at connection creation time.

If you're not sure which protocol to use, you should use MQTT or MQTT-WS. MQTT requires considerably fewer resources than AMQP and supports considerably more IoT Hub functionality than HTTPS. Neither AMQP nor HTTPS are guaranteed to have Device Client SDK implementations for new features going forward, such as Azure IoT Plug and Play.

✔️ feature available ✖️ feature planned but not supported ➖ no support planned

Features mqtt mqtt-ws amqp amqp-ws https Description
Authentication ✔️ ✔️* ✔️ ✔️* ✔️* Connect your device to IoT Hub securely with supported authentication, including private key, SASToken, X-509 Self Signed and Certificate Authority (CA) Signed. *IoT Hub only supports X-509 CA Signed over AMQP and MQTT at the moment.
Send device-to-cloud message ✔️* ✔️* ✔️* ✔️* ✔️* Send device-to-cloud messages (max 256KB) to IoT Hub with the option to add custom properties. IoT Hub only supports batch send over AMQP and HTTPS only at the moment. This SDK supports batch send over HTTP. * Batch send over AMQP and AMQP-WS, and add system properties on D2C messages are in progress.
Receive cloud-to-device messages ✔️* ✔️* ✔️ ✔️ ✔️ Receive cloud-to-device messages and read associated custom and system properties from IoT Hub, with the option to complete/reject/abandon C2D messages. *IoT Hub supports the option to complete/reject/abandon C2D messages over HTTPS and AMQP only at the moment.
Device Twins ✔️* ✔️* ✔️* ✔️* IoT Hub persists a device twin for each device that you connect to IoT Hub. The device can perform operations like get twin tags, subscribe to desired properties. *Send reported properties version and desired properties version are in progress.
Direct Methods ✔️ ✔️ ✔️ ✔️ IoT Hub gives you the ability to invoke direct methods on devices from the cloud. The SDK supports handler for method specific and generic operation.
Upload file to Blob ✔️ A device can initiate a file upload and notifies IoT Hub when the upload is complete. File upload requires HTTPS connection, but can be initiated from client using any protocol for other operations.
Connection Status and Error reporting ✔️* ✔️* ✔️* ✔️* ✖️ Error reporting for IoT Hub supported error code. *This SDK supports error reporting on authentication and Device Not Found.
Retry policies ✔️* ✔️* ✔️* ✔️* ✖️ Retry policy for unsuccessful device-to-cloud messages have two options: no try, exponential backoff with jitter (default). *Custom retry policy is in progress.
Devices multiplexing over single connection ✔️ ✔️ ✔️
Connection Pooling - Specifying number of connections ✖️ ✖️ ✖️
Azure IoT Plug and Play Support ✔️ ✔️ Ability to build Azure IoT Plug and Play devices.

This SDK also contains options you can set and platform specific features. You can find detail list in this document.

Provisioning client SDK

This repository contains provisioning client SDK for the Device Provisioning Service.

✔️ feature available ✖️ feature planned but not supported ➖ no support planned

Features mqtt mqtt-ws amqp amqp-ws https Description
TPM Individual Enrollment ✔️ ✔️ ✔️ This SDK supports connecting your device to the Device Provisioning Service via individual enrollment using Trusted Platform Module. This quickstart reviews how to create a simulated device for individual enrollment with TPM. TPM over MQTT is currently not supported by the Device Provisioning Service.
X.509 Individual Enrollment ✔️ ✔️ ✔️ ✔️ ✔️ This SDK supports connecting your device to the Device Provisioning Service via individual enrollment using X.509 leaf certificate. This quickstart reviews how to create a simulated device for individual enrollment with X.509.
X.509 Enrollment Group ✔️ ✔️ ✔️ ✔️ ✔️ This SDK supports connecting your device to the Device Provisioning Service via enrollment group using X.509 root certificate.

OS Platforms and Hardware Compatibility

The IoT Hub device SDK for C can be used with a broad range of OS platforms and devices.

The minimum requirements are for the device platform to support the following:

  • Support Azure IoT TLS over TCP/IP Requirements: https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-tls-support
  • Support SHA-256 (optional): necessary to generate the secure token for authenticating the device with the service. Different authentication methods are available and not all require SHA-256.
  • Have a Real Time Clock or implement code to connect to an NTP server: necessary for both establishing the TLS connection and generating the secure token for authentication.
  • Having at least 64KB of RAM: the memory footprint of the SDK depends on the SDK and protocol used as well as the platform targeted. The smallest footprint is achieved targeting microcontrollers.

Platform support details can be found in this document. You can find an exhaustive list of the OS platforms the various SDKs have been tested against in the Azure Certified for IoT device catalog. Note that you might still be able to use the SDKs on OS and hardware platforms that are not listed on this page: all the SDKs are open sourced and designed to be portable. If you have suggestions, feedback or issues to report, refer to the Contribution and Support sections below.

Porting the Azure IoT Device Client SDK for C to New Devices

The C SDKs and Libraries:

  • Are written in ANSI C (C99) and avoids compiler extensions to maximize code portability and broad platform compatibility.
  • Expose a platform abstraction layer to isolate OS dependencies (threading and mutual exclusion mechanisms, communications protocol e.g. HTTP). Refer to our porting guide for more information about our abstraction layer.

In the repository you will find instructions and build tools to compile and run the device client SDK for C on Linux, Windows and microcontroller platforms (refer to the links above for more information on compiling the device client for C).

If you are considering porting the device client SDK for C to a new platform, check out the porting guide document.

Contribution, Feedback and Issues

If you encounter any bugs, have suggestions for new features or if you would like to become an active contributor to this project please follow the instructions provided in the contribution guidelines.

Support

  • Have a feature request for SDKs? Please post it on User Voice to help us prioritize.
  • Have a technical question? Ask on Stack Overflow with tag "azure-iot-hub".
  • Need Support? Every customer with an active Azure subscription has access to support with guaranteed response time. Consider submitting a ticket and get assistance from Microsoft support team
  • Found a bug? Please help us fix it by thoroughly documenting it and filing an issue on our GitHub issues.

Read more

SDK Folder Structure

/c-utility, /deps, /umqtt, /uamqp -

These are git submodules that contain code, such as adapters and protocol implementations, shared with other projects.

/build, /build_all

Build and checkin gate related folders.

/certs

Contains certificates needed to communicate with Azure IoT Hub.

/doc

This folder contains application development guides and device setup instructions.

/iothub_client

Contains Azure IoT Hub client components that provide the raw messaging capabilities of the library. Refer to the API documentation and samples for information on how to use it.

  • build: has one subfolder for each platform (e.g. Windows, Linux, Mbed). Contains makefiles, batch files, and solutions that are used to generate the library binaries.
  • devdoc: contains requirements, designs notes, manuals.
  • inc: public include files.
  • src: client libraries source files.
  • samples: contains simple samples.
  • tests: unit and end-to-end tests for source code.

/provisioning_client

This folder contains client library for device provisioning client.

/samples

Contains samples demonstrating more complex E2E scenarios using SDK.

/testtools

Contains tools that are used in testing the libraries.

/tools

Miscellaneous tools.

Deprecated folders

The following folders are deprecated.

/iothub_service_client

Contains libraries that enable interactions with the IoT Hub service to perform operations such as sending messages to devices and managing the device identity registry.

/provisioning_service_client

Contains libraries that enable interactions with the Device Proviosining service to perform operations such as setting policy around the enrollments.

/serializer

Contains libraries that provide modeling and JSON serialization capabilities on top of the raw messaging library.

Long Term Support

The project offers a Long Term Support (LTS) version to allow users that do not need the latest features to be shielded from unwanted changes.

A new LTS version will be created every 6 months. The lifetime of an LTS branch is currently planned for one year. LTS branches receive all bug fixes that fall in one of these categories:

  • security bugfixes
  • critical bugfixes

No new features will be picked up in an LTS branch.

LTS branches are named lts_mm_yyyy, where mm and yyyy are the month and year when the branch was created. An example of such a branch is lts_07_2017.

Schedule

Below is a table showing the mapping of the LTS branches to the packages released

Package Github Branch LTS Status LTS Start Date Maintenance End Date Removal Date
Vcpkg: 2021-01-21 lts_01_2021 Active 2021-01-21 2022-01-21 2022-01-21
Vcpkg: 2020-07-19 lts_07_2020 Active 2020-07-19 2021-07-19 2021-07-19
Vcpkg: 2020-02-07.1 lts_02_2020 Active 2020-02-04 2021-02-04 2021-02-04

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Microsoft collects performance and usage information which may be used to provide and improve Microsoft products and services and enhance your experience. To learn more, review the privacy statement.