-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_loader.py
293 lines (237 loc) · 10.3 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 12 14:57:00 2021
@author: xiaohuaile
"""
import librosa
import numpy as np
import os
import scipy
import soundfile as sf
import tqdm
# from wavinfo import WavInfoReader
from random import shuffle, seed
from scipy import signal
# FIR, frequencies below 60Hz will be filtered
fir = signal.firls(1025, [0, 40, 50, 60, 70, 8000], [0, 0, 0.1, 0.5, 1, 1], fs=16000)
# add the reverberation
def add_pyreverb(clean_speech, rir):
l = len(rir) // 2
reverb_speech = signal.fftconvolve(clean_speech, rir, mode="full")
# make reverb_speech same length as clean_speech
reverb_speech = reverb_speech[l: clean_speech.shape[0] + l]
return reverb_speech
# mix the signal with SNR
def mk_mixture(s1, s2, snr, eps=1e-8):
norm_sig1 = s1 / np.sqrt(np.sum(s1 ** 2) + eps)
norm_sig2 = s2 / np.sqrt(np.sum(s2 ** 2) + eps)
alpha = 10 ** (snr / 20)
mix = norm_sig2 + alpha * norm_sig1
M = max(np.max(abs(mix)), np.max(abs(norm_sig2)), np.max(abs(alpha * norm_sig1))) + eps
mix = mix / M
norm_sig1 = norm_sig1 * alpha / M
norm_sig2 = norm_sig2 / M
# print('alp',alpha/ M)
return norm_sig1, norm_sig2, mix, snr
def get_energy(s, frame_length=512, hop_length=256):
frames = librosa.util.frame(s, frame_length, hop_length)
energy = np.sum(frames ** 2, axis=0)
return energy
def get_VAD(s, frame_length=512, hop_length=256):
s = s / np.max(abs(s))
energy = get_energy(s, frame_length, hop_length)
thd = -4
vad = np.zeros_like(energy)
vad[np.log(energy) > thd] = 1
energy_1 = vad * energy
thd1 = np.log((np.sum(energy_1) / sum(vad)) / 100 + 1e-8)
vad = np.zeros_like(energy)
vad[np.log(energy) > thd1] = 1
return energy, vad
# random 2-order IIR for spectrum augmentation
def spec_augment(s):
r = np.random.uniform(-0.375, -0.375, 4)
sf = signal.lfilter(b=[1, r[0], r[1]], a=[1, r[2], r[3]], x=s)
return sf
class data_generator():
def __init__(self,
noise_dir,
train_clean,
val_clean,
RIR_dir,
temp_data_dir,
length_per_sample=10,
SNR_range=[-5, 5],
fs=16000,
n_fft=512,
n_hop=256,
batch_size=16,
sd=42,
add_reverb=True,
reverb_rate=0.5,
spec_aug_rate=0.3):
'''
keras data generator
Para.:
DNS_dir: the folder of the DNS data, including DNS_dir/clean, DNS_dir/noise
WSJ_dir: the folder of the WSJ data, including train_dir/clean, train_dir/noise
RIR_dir: the folder of RIRs, from OpenSLR26 and OpenSLR28
temp_data_dir: the folder for temporary data storing
length_per_sample: speech sample length in second
SNR_range: the upper and lower bound of the SNR
fs: sample rate of the speech
n_fft: FFT length and window length in STFT
n_hop: hop length in STFT
batch_size: batch size
sample_num: how many samples are used for training and validation
add_reverb: adding reverbrantion or not
reverb_rate: how much data is reverbrant
'''
seed(sd)
np.random.seed(sd)
self.fs = fs
self.batch_size = batch_size
self.length_per_sample = length_per_sample
self.L = length_per_sample * self.fs
# calculate the length of each sample after iSTFT
self.points_per_sample = ((self.L - n_fft) // n_hop) * n_hop + n_fft
self.SNR_range = SNR_range
self.add_reverb = add_reverb
self.reverb_rate = reverb_rate
self.spec_aug_rate = spec_aug_rate
self.noise_dir = noise_dir
self.train_clean = train_clean
self.val_clean = val_clean
self.RIR_dir = RIR_dir
noise_list = []
for f in os.listdir(self.noise_dir):
noise_f = sf.read(os.path.join(self.noise_dir, f), dtype='float32', start=0, stop=0 + self.L)[0]
if not noise_f.shape[0] == 0:
noise_list.append(f)
else:
print(f'noise {f}, shape: {noise_f.shape}')
self.noise_file_list = noise_list
if not os.path.exists(temp_data_dir):
self.train_dir, self.valid_dir = self.preproccess(temp_data_dir)
else:
self.train_dir = os.path.join(temp_data_dir, 'train')
self.valid_dir = os.path.join(temp_data_dir, 'val')
self.train_data = librosa.util.find_files(self.train_dir, ext='npy')
self.valid_data = librosa.util.find_files(self.valid_dir, ext='npy')
np.random.shuffle(self.train_data)
np.random.shuffle(self.valid_data)
if RIR_dir is not None:
self.rir_dir = RIR_dir
self.rir_list = librosa.util.find_files(self.rir_dir, ext='wav')
np.random.shuffle(self.rir_list)
print('there are {} rir clips\n'.format(len(self.rir_list)))
self.train_length = len(self.train_data)
self.valid_length = len(self.valid_data)
print('there are {} clips for training, and {} clips for validation.'.format(self.train_length,
self.valid_length))
def preproccess(self, data_dir):
'''
concatenate the clean speech and split them into 8s clips
'''
if not os.path.exists(data_dir):
os.mkdir(data_dir)
train_dir = self.train_clean
valid_dir = self.val_clean
os.mkdir(os.path.join(data_dir, 'train'))
os.mkdir(os.path.join(data_dir, 'val'))
train_wavs = librosa.util.find_files(train_dir, ext='wav')
valid_wavs = librosa.util.find_files(valid_dir, ext='wav')
train_N_samples = 0
valid_N_samples = 0
for wav in train_wavs:
train_N_samples += round(sf.info(wav).duration * self.fs)
for wav in valid_wavs:
valid_N_samples += round(sf.info(wav).duration * self.fs)
temp_train = np.zeros(train_N_samples, dtype='float32')
N_samples = train_N_samples // self.L
begin = 0
print('prepare clean data...\n')
for wav in tqdm.tqdm(train_wavs):
s = sf.read(wav)[0]
s = s / np.max(abs(s))
temp_train[begin:begin + len(s)] = s
begin += len(s)
for i in tqdm.tqdm(range(N_samples)):
np.save(os.path.join(data_dir, 'train', '{}.npy'.format(i)), temp_train[self.L * i:self.L * (i + 1)])
del temp_train
temp_valid = np.zeros(valid_N_samples, dtype='float64')
N_samples = valid_N_samples // self.L
begin = 0
for wav in tqdm.tqdm(valid_wavs):
s = sf.read(wav)[0]
s = s / np.max(abs(s))
temp_valid[begin:begin + len(s)] = s
begin += len(s)
for i in tqdm.tqdm(range(N_samples)):
np.save(os.path.join(data_dir, 'val', '{}.npy'.format(i)), temp_valid[self.L * i:self.L * (i + 1)])
del temp_valid
return os.path.join(data_dir, 'train'), os.path.join(data_dir, 'val')
def generator(self, batch_size, validation=False):
if validation:
train_data = self.valid_data
else:
train_data = self.train_data
print(type(train_data), train_data)
N_batch = len(train_data) // batch_size
batch_num = 0
while (True):
batch_clean = np.zeros([batch_size, self.L], dtype=np.float32)
batch_noisy = np.zeros([batch_size, self.L], dtype=np.float32)
batch_gain = np.zeros([batch_size, 1], dtype=np.float32)
rir_f_list = np.random.choice(self.rir_list, batch_size)
noise_f_list = np.random.choice(self.noise_file_list, batch_size)
for i in range(batch_size):
SNR = np.random.uniform(self.SNR_range[0], self.SNR_range[1])
# level rescaling gain
gain = np.random.normal(loc=-5, scale=10)
gain = 10 ** (gain / 10)
gain = min(gain, 5)
gain = max(gain, 0.01)
sample_num = batch_num * batch_size + i
clean_f = train_data[sample_num]
noise_f = noise_f_list[i]
# Begin_N = int(np.random.uniform(0, 30 - self.length_per_sample)) * self.fs
Begin_N = 0
# read clean speech and noises
clean_s = np.load(clean_f) / 32768.0
print(f'noise file: {noise_f}, clean file: {clean_f}')
noise_s = \
sf.read(os.path.join(self.noise_dir, noise_f), dtype='float32', start=Begin_N,
stop=Begin_N + self.L)[0]
# high pass filtering
# spectrum augmentation
if np.random.rand() < self.spec_aug_rate:
clean_s = spec_augment(clean_s)
print(f'clean shape: {clean_s.shape}, noise shape: {noise_s.shape}')
# add reverberation
if self.add_reverb:
if np.random.rand() < self.reverb_rate:
rir_s = sf.read(rir_f_list[i], dtype='float32')[0]
if len(rir_s.shape) > 1:
rir_s = rir_s[:, 0]
if clean_f.split('_')[0] == 'clean':
clean_s = add_pyreverb(clean_s, rir_s)
# mix the clean speech and the noise
clean_s, noise_s, noisy_s, _ = mk_mixture(clean_s, noise_s, SNR, eps=1e-8)
# rescaling
batch_clean[i, :] = clean_s * gain
batch_noisy[i, :] = noisy_s * gain
batch_gain[i] = gain
batch_num += 1
if batch_num == N_batch:
batch_num = 0
# if self.use_cross_valid:
# self.train_list, self.validation_list = self.generating_train_validation(self.train_length)
if validation:
train_data = self.valid_data
else:
train_data = self.train_data
np.random.shuffle(train_data)
np.random.shuffle(self.noise_file_list)
N_batch = len(train_data) // batch_size
yield [batch_noisy, batch_gain], batch_clean