-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdenoiser_stream_onnx_test.py
455 lines (388 loc) · 19.9 KB
/
denoiser_stream_onnx_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import argparse
import io
import os
import time
import zipfile
import librosa
import numpy as np
import onnxruntime
import torch
import torchaudio
from denoiser_onnx_test import split_audio_into_frames
seed = 2036
torch.manual_seed(seed)
# torch-> numpy dönüşümü
def to_numpy(tensor):
if torch.is_tensor(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
else:
return tensor
def write(wav, filename, sr=16_000):
# Normalize audio if it prevents clipping
wav = wav / max(wav.abs().max().item(), 1)
torchaudio.save(filename, wav.cpu(), sr)
def load_onnx_from_zip(onnx_tt_model_path):
# .zip arşivini yükleyin (örnek olarak "model.zip" adını varsayalım)
with open(onnx_tt_model_path, "rb") as file:
zip_file = file.read()
# Zip dosyasını bellekte açın
zip_buffer = io.BytesIO(zip_file)
# Zip arşivini açın
with zipfile.ZipFile(zip_buffer, "r") as archive:
# ONNX model dosyasını yükleyin
model_bytes = archive.read("model.onnx")
return model_bytes
def is_zip_file(file_path):
_, file_extension = os.path.splitext(file_path)
return file_extension.lower() == ".zip"
def test_audio_denoising_with_variance(noisy, onnx_tt_model_path, hidden, out_file, depth=4):
# Bu kısmın iyileştirme yapıp yapmadığına emin değilim.
session_options = onnxruntime.SessionOptions()
session_options.intra_op_num_threads = 1
session_options.inter_op_num_threads = 1
session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
session_options.enable_profiling = False
session_options.profile_file_prefix = "profile_streamtt_1thread"
# onnx runtime session oluşturulması
if is_zip_file(onnx_tt_model_path):
model_bytes = load_onnx_from_zip(onnx_tt_model_path)
ort_session = onnxruntime.InferenceSession(model_bytes, session_options)
else:
ort_session = onnxruntime.InferenceSession(onnx_tt_model_path, session_options)
# burada onnx modelinin giriş değerlerinin isimleri alınır.
input_audio_frame_name = ort_session.get_inputs()[0].name # ses dizisini ifade eder
frame_num_name = ort_session.get_inputs()[1].name # frame numarasıdır, her bir frame de artacak
variance_input_name = ort_session.get_inputs()[2].name
# modelin içerisinde güncellenen parametreler aşağıdaki gibidir.
resample_input_frame_name = ort_session.get_inputs()[3].name
resample_out_frame_name = ort_session.get_inputs()[4].name
conv_state_name = ort_session.get_inputs()[5].name
lstm_state_1_name = ort_session.get_inputs()[6].name
lstm_state_2_name = ort_session.get_inputs()[7].name
# conv state leri 9 tane tensor den oluşan bir array dir. Burada size ları belirtilmiştir.
if depth == 4:
conv_state_sizes = [
(1, hidden, 148),
(1, hidden * 2, 36),
(1, hidden * 4, 8),
(1, hidden * 4, 4),
(1, hidden * 2, 4),
(1, hidden, 4),
(1, 1, 4)
]
else:
conv_state_sizes = [
(1, hidden, 596),
(1, hidden * 2, 148),
(1, hidden * 4, 36),
(1, hidden * 8, 8),
(1, hidden * 8, 4),
(1, hidden * 4, 4),
(1, hidden * 2, 4),
(1, hidden, 4),
(1, 1, 4)
]
conv_state_list = [torch.zeros(size) for size in conv_state_sizes] # içeriği sıfır olan torch array oluşturulur.
conv_state = torch.cat([t.view(1, -1) for t in conv_state_list], dim=1)
lstm_state_1 = torch.randn(2, 1, hidden * 2 ** (depth - 1))
lstm_state_2 = torch.randn(2, 1, hidden * 2 ** (depth - 1))
frame_num = torch.tensor([1]) # frame numarası
variance_input = torch.tensor([0.0], dtype=torch.float32)
resample_input_frame = torch.zeros(1, resample_buffer)
resample_out_frame = torch.zeros(1, resample_buffer)
# onnx modelinin çıktısındaki değerlerin isimleri
out_frame_name = ort_session.get_outputs()[0].name # burası çıkış audio array idir.
out_num_frame_name = ort_session.get_outputs()[1].name
# aşağıdakiler her adımda güncellenen değerlerdir. Bu çıkışlar bir sonraki adımda giriş olarak verilecektir.
out_variance_name = ort_session.get_outputs()[2].name
out_resample_in_frame = ort_session.get_outputs()[3].name
out_resample_frame = ort_session.get_outputs()[4].name
out_conv = ort_session.get_outputs()[5].name
out_lstm_1 = ort_session.get_outputs()[6].name
out_lstm_2 = ort_session.get_outputs()[7].name
frame_in_ms = (frame_length / 16000) * 1000 # her bir frame in ms cinsinden uzunluğu
total_duration = (len(noisy) / 16000) * 1000 # ses dosyasının ms cinsinden uzunluğu
with torch.no_grad():
outs = [] # çıkışta oluşan audio tensor lerini tutacak
total_frame = 0
frames = noisy
total_inference_time = 0
# frame length sabit olacak
while frames.shape[1] >= frame_length:
frame = frames[:, :frame_length] # burada ses dosyasının bir kısmı alınır. streaming simulasyonu.
print(f"frame shape:{frame.shape}")
# onnx modelinin giriş değerleri.
input_values = {
input_audio_frame_name: to_numpy(frame),
frame_num_name: to_numpy(frame_num),
variance_input_name: to_numpy(variance_input),
resample_input_frame_name: to_numpy(resample_input_frame),
resample_out_frame_name: to_numpy(resample_out_frame),
conv_state_name: to_numpy(conv_state),
lstm_state_1_name: to_numpy(lstm_state_1),
lstm_state_2_name: to_numpy(lstm_state_2)
}
start_time = time.time()
# onnx modelinin çalışmsı
out = ort_session.run([out_frame_name, out_num_frame_name, out_variance_name, out_resample_in_frame,
out_resample_frame, out_conv, out_lstm_1, out_lstm_2], input_values)
end_time = time.time()
inference_time = (end_time - start_time) * 1000
if inference_time > 0.1:
total_frame += 1
total_inference_time += inference_time
rtf = inference_time / frame_in_ms
print(f"inference time in ms for frame {total_frame + 1}, noisy frame in ms: {frame_in_ms}, "
f"{inference_time} ms. rtf: {rtf}")
output_np = out[0] # enhanced out audio
# bundan sonraki çıktılar, bir sonraki frame için input olacak. dolayısıyla atama yapılıyor.
variance_input = out[2]
resample_input_frame = out[3]
resample_out_frame = out[4]
conv_state = torch.from_numpy(out[5])
lstm_state_1 = out[6]
lstm_state_2 = out[7]
# temizlenmiş frame tensor olarak çıkış dizisine eklenir.
outs.append(torch.from_numpy(output_np))
frames = frames[:, stride:] # bir sonraki frame e gidilir.
frame_num.add_(1) # frame sayısı arttırlır.
# en sonda frame length den küçük kısım kaldıysa, orası da işlenir.
if frames.shape[1] > 0:
# Expand the remaining audio with zeros
last_frame = torch.cat([frames, torch.zeros_like(frames)
[:, :frame_length - frames.shape[1]]], dim=1)
input_values = {
input_audio_frame_name: to_numpy(last_frame),
frame_num_name: to_numpy(frame_num),
variance_input_name: to_numpy(variance_input),
resample_input_frame_name: to_numpy(resample_input_frame),
resample_out_frame_name: to_numpy(resample_out_frame),
conv_state_name: to_numpy(conv_state),
lstm_state_1_name: to_numpy(lstm_state_1),
lstm_state_2_name: to_numpy(lstm_state_2)
}
start_time = time.time()
out = ort_session.run([out_frame_name, out_num_frame_name, out_variance_name, out_resample_in_frame,
out_resample_frame, out_conv, out_lstm_1, out_lstm_2], input_values)
end_time = time.time()
inference_time = (end_time - start_time) * 1000
total_inference_time += inference_time
rtf = inference_time / frame_in_ms
print(f"inference time in ms for frame {total_frame + 1}, frame in ms: {frame_in_ms}, "
f"{inference_time} ms. rtf: {rtf}")
outs.append(torch.from_numpy(out[0]))
if inference_time > 0.1:
total_frame += 1
estimate = torch.cat(outs, 1) # burada çıkıştaki tensor ler bir torch tensor üne dönüştürülür.
# Run the model
prof = ort_session.end_profiling()
average_inference_time = total_inference_time / total_frame
print(f"average inference time in ms: {average_inference_time:.6f}")
print(f"average rtf : {average_inference_time / frame_in_ms:.6f}")
enhanced = estimate / max(estimate.abs().max().item(), 1)
np_enhanced = np.squeeze(enhanced.detach().squeeze(0).cpu().numpy())
write(torch.from_numpy(np_enhanced.reshape(1, len(np_enhanced))).to('cpu'), out_file, sr=16000)
def test_audio_denoising(noisy, onnx_tt_model_path, hidden, out_file, depth=4):
# Bu kısmın iyileştirme yapıp yapmadığına emin değilim.
session_options = onnxruntime.SessionOptions()
session_options.intra_op_num_threads = 1
session_options.inter_op_num_threads = 1
session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
session_options.enable_profiling = False
session_options.profile_file_prefix = "profile_streamtt_1thread"
# onnx runtime session oluşturulması
if is_zip_file(onnx_tt_model_path):
model_bytes = load_onnx_from_zip(onnx_tt_model_path)
ort_session = onnxruntime.InferenceSession(model_bytes, session_options)
else:
ort_session = onnxruntime.InferenceSession(onnx_tt_model_path, session_options)
# burada onnx modelinin giriş değerlerinin isimleri alınır.
input_audio_frame_name = ort_session.get_inputs()[0].name # ses dizisini ifade eder
frame_num_name = ort_session.get_inputs()[1].name # frame numarasıdır, her bir frame de artacak
# modelin içerisinde güncellenen parametreler aşağıdaki gibidir.
resample_input_frame_name = ort_session.get_inputs()[2].name
resample_out_frame_name = ort_session.get_inputs()[3].name
conv_state_name = ort_session.get_inputs()[4].name
lstm_state_1_name = ort_session.get_inputs()[5].name
lstm_state_2_name = ort_session.get_inputs()[6].name
# conv state leri 9 tane tensor den oluşan bir array dir. Burada size ları belirtilmiştir.
if depth == 4:
conv_state_sizes = [
(1, hidden, 148),
(1, hidden * 2, 36),
(1, hidden * 4, 8),
(1, hidden * 4, 4),
(1, hidden * 2, 4),
(1, hidden, 4),
(1, 1, 4)
]
else:
conv_state_sizes = [
(1, hidden, 596),
(1, hidden * 2, 148),
(1, hidden * 4, 36),
(1, hidden * 8, 8),
(1, hidden * 8, 4),
(1, hidden * 4, 4),
(1, hidden * 2, 4),
(1, hidden, 4),
(1, 1, 4)
]
conv_state_list = [torch.zeros(size) for size in conv_state_sizes] # içeriği sıfır olan torch array oluşturulur.
conv_state = torch.cat([t.view(1, -1) for t in conv_state_list], dim=1)
lstm_state_1 = torch.randn(2, 1, hidden * 2 ** (depth - 1))
lstm_state_2 = torch.randn(2, 1, hidden * 2 ** (depth - 1))
frame_num = torch.tensor([1]) # frame numarası
resample_input_frame = torch.zeros(1, resample_buffer)
resample_out_frame = torch.zeros(1, resample_buffer)
# onnx modelinin çıktısındaki değerlerin isimleri
out_frame_name = ort_session.get_outputs()[0].name # burası çıkış audio array idir.
out_num_frame_name = ort_session.get_outputs()[1].name
# aşağıdakiler her adımda güncellenen değerlerdir. Bu çıkışlar bir sonraki adımda giriş olarak verilecektir.
out_resample_in_frame = ort_session.get_outputs()[2].name
out_resample_frame = ort_session.get_outputs()[3].name
out_conv = ort_session.get_outputs()[4].name
out_lstm_1 = ort_session.get_outputs()[5].name
out_lstm_2 = ort_session.get_outputs()[6].name
frame_in_ms = (frame_length / 16000) * 1000 # her bir frame in ms cinsinden uzunluğu
total_duration = (len(noisy) / 16000) * 1000 # ses dosyasının ms cinsinden uzunluğu
with torch.no_grad():
outs = [] # çıkışta oluşan audio tensor lerini tutacak
total_frame = 0
frames = noisy
total_inference_time = 0
# frame length sabit olacak
while frames.shape[1] >= frame_length:
frame = frames[:, :frame_length] # burada ses dosyasının bir kısmı alınır. streaming simulasyonu.
print(f"frame shape:{frame.shape}")
# onnx modelinin giriş değerleri.
input_values = {
input_audio_frame_name: to_numpy(frame),
frame_num_name: to_numpy(frame_num),
resample_input_frame_name: to_numpy(resample_input_frame),
resample_out_frame_name: to_numpy(resample_out_frame),
conv_state_name: to_numpy(conv_state),
lstm_state_1_name: to_numpy(lstm_state_1),
lstm_state_2_name: to_numpy(lstm_state_2)
}
start_time = time.time()
# onnx modelinin çalışmsı
out = ort_session.run([out_frame_name, out_num_frame_name, out_resample_in_frame, out_resample_frame,
out_conv, out_lstm_1, out_lstm_2], input_values)
end_time = time.time()
inference_time = (end_time - start_time) * 1000
if inference_time > 0.1:
total_frame += 1
total_inference_time += inference_time
rtf = inference_time / frame_in_ms
print(f"inference time in ms for frame {total_frame + 1}, noisy frame in ms: {frame_in_ms}, "
f"{inference_time} ms. rtf: {rtf}")
output_np = out[0] # enhanced out audio
# bundan sonraki çıktılar, bir sonraki frame için input olacak. dolayısıyla atama yapılıyor.
resample_input_frame = out[2]
resample_out_frame = out[3]
conv_state = torch.from_numpy(out[4])
lstm_state_1 = out[5]
lstm_state_2 = out[6]
# temizlenmiş frame tensor olarak çıkış dizisine eklenir.
outs.append(torch.from_numpy(output_np))
# bir sonraki frame e gidilir.
frame_num.add_(1) # frame sayısı arttırlır.
# en sonda frame length den küçük kısım kaldıysa, orası da işlenir.
if frames.shape[1] > 0:
# Expand the remaining audio with zeros
last_frame = torch.cat([frames, torch.zeros_like(frames)
[:, :frame_length - frames.shape[1]]], dim=1)
input_values = {
input_audio_frame_name: to_numpy(last_frame),
frame_num_name: to_numpy(frame_num),
resample_input_frame_name: to_numpy(resample_input_frame),
resample_out_frame_name: to_numpy(resample_out_frame),
conv_state_name: to_numpy(conv_state),
lstm_state_1_name: to_numpy(lstm_state_1),
lstm_state_2_name: to_numpy(lstm_state_2)
}
start_time = time.time()
out = ort_session.run([out_frame_name, out_num_frame_name, out_resample_in_frame, out_resample_frame,
out_conv, out_lstm_1, out_lstm_2], input_values)
end_time = time.time()
inference_time = (end_time - start_time) * 1000
total_inference_time += inference_time
rtf = inference_time / frame_in_ms
print(f"inference time in ms for frame {total_frame + 1}, frame in ms: {frame_in_ms}, "
f"{inference_time} ms. rtf: {rtf}")
outs.append(torch.from_numpy(out[0]))
if inference_time > 0.1:
total_frame += 1
estimate = torch.cat(outs, 1) # burada çıkıştaki tensor ler bir torch tensor üne dönüştürülür.
# Run the model
prof = ort_session.end_profiling()
average_inference_time = total_inference_time / total_frame
print(f"average inference time in ms: {average_inference_time:.6f}")
print(f"average rtf : {average_inference_time / frame_in_ms:.6f}")
enhanced = estimate / max(estimate.abs().max().item(), 1)
np_enhanced = np.squeeze(enhanced.detach().squeeze(0).cpu().numpy())
write(torch.from_numpy(np_enhanced.reshape(1, len(np_enhanced))).to('cpu'), out_file, sr=16000)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model', type=str, required=True, help='Onnx model file')
parser.add_argument('-n', '--noisy_path', type=str, required=True, help='Noisy audio file or a noisy directory.')
parser.add_argument('-o', '--out_path', type=str, required=True,
help='Out enhanced file or out directory for enhanced files.')
parser.add_argument('-hs', '--hidden_size', type=int, required=False, default=48,
help='Hidden size for dns model.')
parser.add_argument('-d', '--depth', type=int, required=False, default=4,
help='Model depth')
parser.add_argument('-f', '--frame_length', type=int, required=False, default=480, help='frame length value')
parser.add_argument('-b', '--resample_buffer', type=int, required=False, default=64, help='resample buffer value')
parser.add_argument('-s', '--stride', type=int, required=False, default=64, help='Stride value')
parser.add_argument('-r', '--recurse', type=bool, required=False, default=True,
help='Recurse noisy audio directory.')
parser.add_argument('-v', '--variance', action='store_true',
help='True if you test with a model that includes variance')
args = parser.parse_args()
onnx_model_file = args.model
noisy_path = args.noisy_path
out_path = args.out_path
hidden = args.hidden_size
depth = args.depth
frame_length = args.frame_length
resample_buffer = args.resample_buffer
stride = args.stride
recurse = args.recurse
with_variance = args.variance
'''
if depth == 4:
frame_length = 480
resample_buffer = 64
stride = 64
else:
frame_length = 661 # depth = 5
resample_buffer = 256 # depth = 5
stride = 256 # depth = 5
'''
if os.path.isfile(noisy_path):
noisy, sr = torchaudio.load(str(noisy_path))
# noisy, sr = torchaudio.load(str(audio_file))
print(f"inference starts for {noisy_path}")
parent_out_dir = os.path.dirname(out_path)
if not os.path.exists(parent_out_dir):
os.mkdir(parent_out_dir)
if with_variance:
test_audio_denoising_with_variance(noisy, onnx_model_file, hidden, out_path, depth)
else:
test_audio_denoising(noisy, onnx_model_file, hidden, out_path, depth)
else:
if not os.path.exists(out_path):
os.mkdir(out_path)
noisy_files = librosa.util.find_files(noisy_path, ext='wav', recurse=recurse)
for noisy_f in noisy_files:
name = os.path.basename(noisy_f)
out_file = os.path.join(out_path, name)
noisy, sr = torchaudio.load(str(noisy_f))
print(f"inference starts for {noisy_f}")
if with_variance:
test_audio_denoising_with_variance(noisy, onnx_model_file, hidden, out_file, depth)
else:
test_audio_denoising(noisy, onnx_model_file, hidden, out_file, depth)
print(f"inference done for {noisy_f}.")