-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpretrain.py
170 lines (138 loc) · 5.69 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
"""
pretrain auto-encoder model on the positive and candidate datasets.
"""
import config as cfg
from kogger import Logger
from accelerate import Accelerator
import pprint
from dataset import PretrainCIFData
from dataset_helper import collate_pool
from utils import AverageMeter
from model import CrystalGraph
import torch
from torch.utils.data import DataLoader
import torch.optim as optim
from torch.optim.lr_scheduler import MultiStepLR
import time
import matplotlib.pyplot as plt
import numpy as np
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
def pretrain(accelerator, model, train_loader, optimizer, scheduler, config, logger):
# switch to train mode
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
train_loss = []
for epoch in range(config['start_epoch'], config['start_epoch']+config['epochs']):
end = time.time()
for batch_idx, (inputs, target, cif_id) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
# input: list, len=4
# label: [b, ]
atom_fea, nbr_fea, nbr_fea_idx, degree, crystal_atom_idx = inputs
# accelerate distributed train with multi-gpus
loss = model.module.pretrain(atom_fea, nbr_fea, nbr_fea_idx, degree, crystal_atom_idx) # [b, features]
# accelerate with single gpu for debug
# loss = model.pretrain(atom_fea, nbr_fea, nbr_fea_idx, degree, crystal_atom_idx) # [b, features]
optimizer.zero_grad()
accelerator.backward(loss)
optimizer.step()
with torch.no_grad():
losses.update(loss.item(), target.shape[0])
train_loss.append(losses.val)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
accelerator.wait_for_everyone()
if accelerator.is_main_process and (epoch % config['log_epoch_freq'] == 0 or epoch == 1) and batch_idx % config['log_batch_freq'] == 0:
logger.info('[Pretrain] Epoch [{}/{}] [{}/{}]\t BT {:.3f} ({:.3f})\t DT {:.3f} ({:.3f})\t Loss {:.4e} ({:.4e})\t [Save]'.format(epoch, config['start_epoch']+config['epochs']-1, batch_idx, len(train_loader), batch_time.val, batch_time.avg, data_time.val, data_time.avg, losses.val, losses.avg))
output_dir = '{}-{}epoch'.format(config['pre_ckpt_path'], epoch)
accelerator.save_state(output_dir=output_dir)
scheduler.step()
if epoch % 1 == 0:
np.save(config['restore_loss'], np.array(train_loss))
# if accelerator.is_main_process and epoch % config['save_epoch_freq'] == 0:
# accelerator.save_state(output_dir=config['pre_ckpt_path'])
return np.array(train_loss)
def main():
# load and set config
args = cfg.get_parser().parse_args()
config = cfg.load_config(yaml_filename=args.filename)
config = cfg.process_config(config)
accelerator = Accelerator()
logger = Logger('PID %d' % accelerator.process_index, file=config['log_file'])
# logger = Logger('PID %d' % accelerator.process_index)
if accelerator.is_main_process:
logger.info('Load config successfully!')
logger.info(pprint.pformat(config))
# load data
if accelerator.is_main_process:
logger.info('Load data...')
dataset = PretrainCIFData(
root_dir=config['root_dir'],
processed_dir=config['processed_dir'],
radius=config['radius'],
max_num_nbr=config['max_num_nbr'],
dmin=config['dmin'],
step=config['step'],
logger=logger
)
train_loader = DataLoader(
dataset=dataset,
collate_fn=collate_pool,
batch_size=config['batch_size'],
shuffle=config['shuffle'],
num_workers=config['num_workers'],
pin_memory=True
)
# build model
inputs, _, _ = dataset[0]
orig_atom_fea_len = inputs[0].shape[-1]
nbr_fea_len = inputs[1].shape[-1]
crystal_gnn_config = config['crystal_gnn_config']
crystal_gnn_config['orig_atom_fea_len'] = orig_atom_fea_len
crystal_gnn_config['nbr_fea_len'] = nbr_fea_len
model = CrystalGraph(
crystal_gnn_config=crystal_gnn_config,
head_output_dim=config['head_output_dim'],
drop_rate=config['drop_rate'],
decoder_sample_size=config['sample_size'],
device=accelerator.device
)
# pretrain
optimizer = optim.Adam(model.parameters(), config['lr'], weight_decay=config['weight_decay'])
scheduler = MultiStepLR(optimizer, milestones=config['lr_milestones'], gamma=0.1)
model, train_loader, optimizer, scheduler = accelerator.prepare(
model, train_loader, optimizer, scheduler
)
# pretrain
if accelerator.is_main_process:
logger.info('Pretrain...')
if config['continuous_pretrain']:
accelerator.load_state(input_dir=config['pre_ckpt_path'])
pretrain_loss = pretrain(
accelerator=accelerator,
model=model,
train_loader=train_loader,
optimizer=optimizer,
scheduler=scheduler,
config=config,
logger=logger
)
if accelerator.is_main_process:
np.save(config['restore_loss'], pretrain_loss)
# plot pretrain loss
fig = plt.figure()
start = config['start_epoch']
pretrain_idx = np.arange(start, config['epochs'] * len(train_loader) + start)
plt.semilogy(pretrain_idx, pretrain_loss)
plt.title('Pretrain Loss')
plt.xlabel('Iteration')
fig.savefig(config['figs_pretrain'])
plt.show()
logger.info('Done!')
if __name__ == '__main__':
main()