-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
182 lines (154 loc) · 6.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
"""
load the weights of encoder from auto-encoder model and train classifier model
on the fine-tuning datasets.
"""
import config as cfg
from kogger import Logger
from accelerate import Accelerator
from accelerate import DistributedDataParallelKwargs
import pprint
from dataset import TrainCIFData
from dataset_helper import collate_pool
from utils import AverageMeter
from model import CrystalGraph
import torch
from torch.utils.data import DataLoader
import torch.optim as optim
from torch.optim.lr_scheduler import MultiStepLR
import time
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
def train(accelerator, model, writer, train_loader, optimizer, scheduler, loss_func, config, logger):
# switch to train mode
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
for epoch in range(1, config['epochs']+1):
end = time.time()
for batch_idx, (inputs, target, _) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
# input: list, len=4
# label: [b, ]
atom_fea, nbr_fea, nbr_fea_idx, degree, crystal_atom_idx = inputs
output = model(atom_fea, nbr_fea, nbr_fea_idx, crystal_atom_idx) # [b, features]
loss = loss_func(output, target)
optimizer.zero_grad()
accelerator.backward(loss)
optimizer.step()
with torch.no_grad():
losses.update(loss.item(), target.shape[0])
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if accelerator.is_main_process and (epoch % config['log_epoch_freq'] == 0 or epoch == 1) and batch_idx % config['log_batch_freq'] == 0:
logger.info('[Train] Epoch [{}/{}] [{}/{}]\t BT {:.3f} ({:.3f})\t DT {:.3f} ({:.3f})\t Loss {:.4e} ({:.4e})\t'.format(epoch, config['epochs'], batch_idx, len(train_loader), batch_time.val, batch_time.avg, data_time.val, data_time.avg, losses.val, losses.avg))
scheduler.step()
if accelerator.is_main_process:
writer.add_scalar('Loss/train', losses.val, epoch)
if accelerator.is_main_process and epoch % config['save_epoch_freq'] == 0:
accelerator.save_state(output_dir=config['ckpt_path'])
def main():
# load and set config
args = cfg.get_parser().parse_args()
config = cfg.load_config(yaml_filename=args.filename)
config = cfg.process_config(config)
# accelerator = Accelerator()
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
writer = SummaryWriter(comment=config['comment'])
logger = Logger('PID %d' % accelerator.process_index, file=config['log_file'])
# logger = Logger('PID %d' % accelerator.process_index)
if accelerator.is_main_process:
logger.info('Load config successfully!')
logger.info(pprint.pformat(config))
# load data
if accelerator.is_main_process:
logger.info('Load data...')
dataset = TrainCIFData(
root_dir=config['root_dir'],
processed_dir=config['processed_dir'],
radius=config['radius'],
ratio=config['ratio'],
max_num_nbr=config['max_num_nbr'],
dmin=config['dmin'],
step=config['step'],
logger=logger
)
# export_data(dataset)
# exit(-1)
train_loader = DataLoader(
dataset=dataset,
collate_fn=collate_pool,
batch_size=config['batch_size'],
shuffle=config['shuffle'],
num_workers=config['num_workers'],
pin_memory=True
)
# build model
inputs, _, _ = dataset[0]
orig_atom_fea_len = inputs[0].shape[-1]
nbr_fea_len = inputs[1].shape[-1]
crystal_gnn_config = config['crystal_gnn_config']
crystal_gnn_config['orig_atom_fea_len'] = orig_atom_fea_len
crystal_gnn_config['nbr_fea_len'] = nbr_fea_len
model = CrystalGraph(
crystal_gnn_config=crystal_gnn_config,
head_output_dim=config['head_output_dim'],
drop_rate=config['drop_rate'],
decoder_sample_size=config['sample_size'],
device=accelerator.device
)
# train
optimizer = optim.Adam(model.parameters(), config['lr'], weight_decay=config['weight_decay'])
# optimizer = optim.SGD(model.parameters(), config['lr'], momentum=config['momentum'], weight_decay=config['weight_decay'])
scheduler = MultiStepLR(optimizer, milestones=config['lr_milestones'], gamma=0.1)
model, train_loader, optimizer, scheduler = accelerator.prepare(
model, train_loader, optimizer, scheduler
)
loss_func = nn.CrossEntropyLoss()
# train
if accelerator.is_main_process:
logger.info('Train...')
if config['load_pretrain']:
if accelerator.is_main_process:
logger.info('Load pre-train model...')
accelerator.load_state(input_dir=config['pre_ckpt_path'])
elif config['continuous_train']:
if accelerator.is_main_process:
logger.info('Continue train...')
accelerator.load_state(input_dir=config['ckpt_path'])
train(
accelerator=accelerator,
model=model,
writer=writer,
train_loader=train_loader,
loss_func=loss_func,
optimizer=optimizer,
scheduler=scheduler,
config=config,
logger=logger
)
if accelerator.is_main_process:
logger.info('Done!')
# def export_data(dataset):
# posi_num = 22
# nega_num = 22
# save_dir = 'out/tmp'
#
# for i in range(posi_num):
# atom_fea, nbr_fea = dataset.dataset_posi[0][i].clone(), dataset.dataset_posi[1][i].clone()
# torch.save(atom_fea, osp.join(save_dir, 'label1_atom_fea_{}.pkl'.format(i)))
# torch.save(nbr_fea, osp.join(save_dir, 'label1_nbr_fea_{}.pkl'.format(i)))
#
# for i in range(nega_num):
# atom_fea, nbr_fea = dataset.dataset_nega[0][i].clone(), dataset.dataset_nega[1][i].clone()
# torch.save(atom_fea, osp.join(save_dir, 'label0_atom_fea_{}.pkl'.format(i)))
# torch.save(nbr_fea, osp.join(save_dir, 'label0_nbr_fea_{}.pkl'.format(i)))
if __name__ == '__main__':
main()