

FUNCTIONALLY OBLIVIOUS (AND SUCCINCT)

Edward Kmett McGraw Hill Financial

BUILDING BETTER TOOLS

Cache-Oblivious Algorithms

Succinct Data Structures

DATA.MAP

- Production:
 - empty :: Ord $k \Rightarrow$ Map k a
 - insert :: Ord $k \Rightarrow k \rightarrow a \rightarrow Map \ k \ a \rightarrow Map \ k \ a$
- Consumption:
 - null :: Ord $k \Rightarrow Map \ k \ a \rightarrow Bool$
 - lookup :: Ord $k \Rightarrow k \rightarrow Map \ k \ a \rightarrow Maybe a$

DATA.MAP

- Built by Daan Leijen.
- Maintained by Johan Tibell and Milan Straka.
- Battle Tested. Highly Optimized. In use since 1998.
- Built on Trees of Bounded Balance
- The defacto benchmark of performance.
- Designed for the Pointer/RAM Model

WHAT I WANT

- I need a Map that has support for very efficient range queries
- It also needs to support very efficient writes
- It needs to support unboxed data
- ...and I don't want to give up all the conveniences of Haskell
- But I can let point query performance suffer a bit.

THE DUMBEST THING THAT CAN WORK

- Take an array of (key, value) pairs sorted by key and arrange it contiguously in memory
- Binary search it.
- Eventually your search falls entirely within a cache line.

BINARY SEARCH

```
- | Binary search assuming 0 <= l <= h.
- Returns h if the predicate is never True over [l..h)
search :: (Int -> Bool) -> Int -> Int -> Int
search p = go where
go l h
| l == h = l
| p m = go l m
| otherwise = go (m+1) h
where m = l + unsafeShiftR (h - l) 1
{-# INLINE search #-}
```


- | Offset binary search assuming 0 <= l <= h.</pre>
- Returns h if the predicate is never True over [l..h)

- Almost everything you do in Haskell assumes this model
- Good for ADTs, but not a realistic model of today's hardware

"Binary search trees of bounded balance"

"Binary search trees of bounded balance"

- Can Read/Write Contiguous Blocks of Size B
- Can Hold **M/B** blocks in working memory
- All other operations are "Free"

B-TREES

- Occupies O(N/B) blocks worth of space
- Update in time O(log(N/B))
- Search O(log(N/B) + a/B) where a is the result set size

IO MODEL

$\begin{array}{c} \mathsf{CPU} + \\ \mathsf{Registers} \end{array} \longleftrightarrow \mathsf{L1} \longleftrightarrow \mathsf{L2} \longleftrightarrow \mathsf{L3} \longleftrightarrow \begin{array}{c} \mathsf{Main} \\ \mathsf{Memory} \end{array} \longleftrightarrow \mathsf{Disk} \end{array}$

IO MODEL

- Huge numbers of constants to tune
- Optimizing for one necessarily sub-optimizes others
- Caches grows exponentially in size and slowness

CACHE-OBLIVIOUS MODEL

- Can Read/Write Contiguous Blocks of Size B
- Can Hold **M/B** Blocks in working memory
- All other operations are "Free"
- But now you don't get to know **M** or **B**!
- Various refinements exist e.g. the tall cache assumption

CACHE-OBLIVIOUS MODEL

- If your algorithm is asymptotically optimal for an unknown cache with an optimal replacement policy it is *asymptotically* optimal for *all* caches at the same time.
- You can relax the assumption of optimal replacement and model LRU, **k**-way set associative caches, and the like via caches by modest reductions in **M**.

CACHE-OBLIVIOUS MODEL

- As caches grow taller and more complex it becomes harder to tune for them at the same time. Tuning for one provably renders you suboptimal for others.
- The overhead of this model is largely compensated for by ease of portability and vastly reduced tuning.
- This model is becoming more and more true over time!

DYNAMIZATION

- We have a static structure that does what we want
- How can we make it updatable?
- Bentley and Saxe gave us one way in 1980.

- Linked list of our static structure.
- Each a power of 2 in size.
- The list is sorted strictly monotonically by size.
- Bigger / older structures are later in the list.
- We need a way to merge query results.
- Here we just take the first.

Now let's insert 7

Now let's insert 8

Next insert causes a cascade of carries! Worst-case insert time is **O(N/B)** *Amortized* insert time is **O((log N)/B)** We computed that oblivous to **B**

SLOPPY AND DYSFUNCTIONAL

- Chris Okasaki would not approve!
- Our analysis used assumed linear/ephemeral access.
- A sufficiently long carry might rebuild the whole thing, but if you went back to the old version and did it again, it'd have to do it all over.
- You can't earn credits and spend them twice!

AMORTIZATION

Given a sequence of **n** operations:

a₁, a₂, a₃.. a_n

What is the running time of the whole sequence?

$$\forall k \leq n. \sum_{i=1}^{k} actual_{i} \leq \sum_{i=1}^{k} amortized_{i}$$

There are algorithms for which the amortized bound is provably better than the achievable worst-case bound *e.g.* Union-Find

BANKER'S METHOD

- Assign a price to each operation.
- Store savings/borrowings in state around the data structure
- If no account has any debt, then

$$\forall k \leq n. \sum_{i=1}^{k} actual_{i} \leq \sum_{i=1}^{k} amortized_{i}$$

PHYSICIST'S METHOD

- Start from savings and derive costs per operation
- Assign a ''potential'' ${f \Phi}$ to each state in the data structure
- The amortized cost is actual cost plus the change in potential.

amortized; = $actual_i + \Phi_i - \Phi_{i-1}$ actual; = $amortized_i + \Phi_{i-1} - \Phi_i$

• Amortization holds if $\Phi_0 = 0$ and $\Phi_n \ge 0$

NUMBER SYSTEMS

- Unary Linked List
- Binary Bentley-Saxe
- Skew-Binary Okasaki's Random Access Lists
- Zeroless Binary ?

0			0
2			0
3			
4		0	0
5		0	I
6			0
7			I
8	0	0	0
9	0	0	
10	0		0

ZEROLESS BINARY

- Digits are all 1, 2.
- Unique representation

MODIFIED ZEROLESS BINARY

- Digits are all 1, 2 or 3.
- Only the leading digit can be I
- Unique representation
- Just the right amount of lag

0		0
1		
2		2
3		3
4		2
5		3
6	2	2
7	2	3
8	3	2
9	3	3
10	2	2

Binary

0			0
I			I
2			0
3			I
4	I	0	0
5	I	0	I
6	I		0
7	Ι		I
8	0	0	0
9	0	0	Ι
10	0		0

Modified Zeroless Binary Zeroless Binary

0		
2		2
3		
4	I	2
5	I	
6	2	2
7	2	Ι
8		2
9		
10	2	2

PERSISTENTLY AMORTIZED

```
data Map k a
  = M0
   M1 !(Chunk k a)
   M2 !(Chunk k a) !(Chunk k a) (Chunk k a) !(Map k a)
    M3 !(Chunk k a) !(Chunk k a) !(Chunk k a) (Chunk k a) !(Map k a)
data Chunk k a = Chunk !(Array k) !(Array a)
- | O(log(N)/B) persistently amortized. Insert an element.
insert :: (Ord k, Arrayed k, Arrayed v) => k -> v -> Map k v -> Map k v
insert k0 v0 = go  Chunk (singleton k0) (singleton v0) where
  go as M0= M1 asgo as (M1 bs)= M2 as bs (merge as bs) M0
  go as (M2 bs cs bcs xs) = M3 as bs cs bcs xs
  go as (M3 bs _ _ cds xs) = cds `seq` M2 as bs (merge as bs) (go cds xs)
{-# INLINE insert #-}
```

WHY DO WE CARE?

- Inserts are ~7-10x faster than Data.Map and get faster with scale!
- The structure is easily mmap'd in from disk for offline storage
- This lets us build an "unboxed Map" from unboxed vectors.
- Matches insert performance of a B-Tree without knowing B.
- Nothing to tune.

PROBLEMS

- Searching the structure we've defined so far takes $O(\log^2(N/B) + a/B)$
- We only matched insert performance, but not query performance.
- We have to query O(log n) structures to answer queries.

FRACTIONAL CASCADING

- Search **m** sorted arrays each of sizes up to **n** at the same time.
- Precalculations are allowed, but not a huge explosion in space
- Very useful for many computational geometry problems.
- Naïve Solution: Binary search each separately in O(m log n)
- With Fractional Cascading: O (log mn) = O(log m + log n)

FRACTIONAL CASCADING

• Consider 2 sorted lists e.g.

 ${}^{\bullet}$ Copy every ${\bf k}$ th entry from the second into the first

 After a failed search in the first, you now have to search a constant k-sized fragment of the second.

IMPLICIT FRACTIONAL CASCADING

- New trick:
- We copy every **k**th entry up from the next largest array.
- If we had a way to count the number of forwarding pointers up to a given position we could just multiply that # by k and not have to store the pointers themselves

SUCCINCT DICTIONARIES

• Given a bit vector of length **n** containing **k** ones *e.g.*

0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0

- There exist $\binom{n}{k}$ such vectors. $H_0 = \log \binom{n}{k} + 1$
- Knowing nothing else we could store that choice in Ho bits

rank_a(i) = # of occurrences of a in S[0..i) select_a(i) = position of the ith a in S

IMPLICIT FORWARDING

- Store a bitvector for each key in the vector that indicates if the key is a forwarding pointer, or has a value associated.
- To index into the values use rank up to a given position instead.
- This can also be used to represent deletion flags succinctly.
- In practice we can use non-succinct algorithms. (rank9, poppy)

NON-SUCCINCT DICTIONARIES

• Given a bit vector of length **n** containing **k** ones *e.g.*

0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0

- Break it into chunks of size log(n) (or 64)
- Store a prefix sum up to each chunk
- With just 2n total space we get an O(1) version of:
 rank_a(S,i) = # of occurrences of a in S[0..i)

- Associate a *hierarchical* Bloom filter with each array tuned to a false positive rate that balances the cost of the cache misses for the binary search against the cost of hashing into the filter.
- Improves upon a version of the "Stratified Doubling Array"
- Not Cache-Oblivious!

BENEFITS

- Match the asymptotic B-Tree performance without knowing B
- Fully persistent, can edit previous versions.
- Always uses sequential writes on disk
- We get ~ IOx faster inserts than Data.Map
- We can reuse these techniques for other problem domains

QUESTIONS?

• The code is on github:

http://github.com/ekmett/structures http://github.com/ekmett/succinct

NON-SUCCINCT DICTIONARIES

• Given a bit vector of length **n** containing **k** ones *e.g.*

0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0

- Break it into chunks of size log(n) (or 64)
- Store a prefix sum up to each chunk
- With just 2n total space we get an O(1) version of:
 rank_a(S,i) = # of occurrences of a in S[0..i)

SUCCINCT TREES

- Parsed data takes several times more space than the raw format
- Pointers and ADTs are big
- How can we do better?

JACOBSONTREES k `div` 2 Start with an implicit tree 2k+l2k

•