
FUNCTIONALLY OBLIVIOUS	

(AND SUCCINCT)

Edward Kmett	

McGraw Hill Financial

BUILDING BETTER TOOLS

• Cache-Oblivious Algorithms	

• Succinct Data Structures

• Production:

• empty :: Ord k => Map k a

• insert :: Ord k => k -> a -> Map k a -> Map k a

• Consumption:

• null :: Ord k => Map k a -> Bool

• lookup :: Ord k => k -> Map k a -> Maybe a

DATA.MAP

• Built by Daan Leijen. 	

• Maintained by Johan Tibell and Milan Straka.	

• Battle Tested. Highly Optimized. In use since 1998.	

• Built on Trees of Bounded Balance	

• The defacto benchmark of performance.	

• Designed for the Pointer/RAM Model

DATA.MAP

WHAT I WANT

• I need a Map that has support for very efficient range queries	

• It also needs to support very efficient writes	

• It needs to support unboxed data	

• ...and I don’t want to give up all the conveniences of Haskell	

• But I can let point query performance suffer a bit.

THE DUMBEST THING
THAT CAN WORK

• Take an array of (key, value) pairs sorted by key and arrange it
contiguously in memory	

• Binary search it.	

• Eventually your search falls entirely within a cache line.

BINARY SEARCH

— | Binary search assuming 0 <= l <= h.
— Returns h if the predicate is never True over [l..h)
!
search :: (Int -> Bool) -> Int -> Int -> Int
search p = go where
 go l h
 | l == h = l
 | p m = go l m
 | otherwise = go (m+1) h
 where m = l + unsafeShiftR (h - l) 1
{-# INLINE search #-}

OFFSET BINARY SEARCH

— | Offset binary search assuming 0 <= l <= h.
— Returns h if the predicate is never True over [l..h)
!
search :: (Int -> Bool) -> Int -> Int -> Int
search p = go where
 go l h
 | l == h = l
 | p m = go l m
 | otherwise = go (m+1) h
 where hml = h - l
 m = l + unsafeShiftR hml 1 + unsafeShiftR hml 6
{-# INLINE search #-}

Pro Tip!

Avoids thrashing the same lines in k-way set
associative caches near the root.

RAM MODEL

• Almost everything you do in Haskell assumes this model	

• Good for ADTs, but not a realistic model of today’s hardware

DATA.MAP

“Binary search trees of bounded balance”

2

1 4

3 5

DATA.MAP

“Binary search trees of bounded balance”

2

1

4

3

5

6

IO MODEL

CPU +
Memory	

Disk	

• Can Read/Write Contiguous Blocks of Size B	

• Can Hold M/B blocks in working memory	

• All other operations are “Free”

N

B

B-TREES

• Occupies O(N/B) blocks worth of space	

• Update in time O(log(N/B))	

• Search O(log(N/B) + a/B) where a is the result set size	

IO MODEL

CPU +
Registers L1	

 L2	

 L3	

 Main

Memory	

 Disk	

• Huge numbers of constants to tune	

• Optimizing for one necessarily sub-optimizes others	

• Caches grows exponentially in size and slowness

IO MODEL

CPU +
Registers L1	

 L2	

 L3	

 Main

Memory	

 Disk	

M1 M2 M3 M4 M5

B1 B2 B3 B4 B5

• Can Read/Write Contiguous Blocks of Size B	

• Can Hold M/B Blocks in working memory	

• All other operations are “Free”	

• But now you don’t get to know M or B!	

• Various refinements exist e.g. the tall cache assumption

CACHE-OBLIVIOUS MODEL

CPU +
Memory	

Disk	

M

B

• If your algorithm is asymptotically optimal for an unknown
cache with an optimal replacement policy it is asymptotically
optimal for all caches at the same time.	

• You can relax the assumption of optimal replacement and
model LRU, k-way set associative caches, and the like via
caches by modest reductions in M.

CACHE-OBLIVIOUS MODEL

CPU +
Memory	

Disk	

M

B

• As caches grow taller and more complex it becomes harder
to tune for them at the same time. Tuning for one provably
renders you suboptimal for others. 	

• The overhead of this model is largely compensated for by ease
of portability and vastly reduced tuning.	

• This model is becoming more and more true over time!

CACHE-OBLIVIOUS MODEL

CPU +
Memory	

Disk	

M

B

DYNAMIZATION

• We have a static structure that does what we want	

• How can we make it updatable?	

• Bentley and Saxe gave us one way in 1980.

BENTLEY-SAXE

• Linked list of our static structure. 	

• Each a power of 2 in size.	

• The list is sorted strictly monotonically by size. 	

• Bigger / older structures are later in the list.	

• We need a way to merge query results.	

• Here we just take the first.

BENTLEY-SAXE

5

2 20 30 40

Now let’s insert 7

BENTLEY-SAXE

5 7

5 7

2 20 30 40

BENTLEY-SAXE

5 7

2 20 30 40

Now let’s insert 8

BENTLEY-SAXE

8

5 7

2 20 30 40

Next insert causes a cascade of carries! 	

Worst-case insert time is O(N/B)

Amortized insert time is O((log N)/B)
We computed that oblivous to B

SLOPPY AND DYSFUNCTIONAL

• Chris Okasaki would not approve!	

• Our analysis used assumed linear/ephemeral access.	

• A sufficiently long carry might rebuild the whole thing, but if you
went back to the old version and did it again, it’d have to do it all
over. 	

• You can’t earn credits and spend them twice!

AMORTIZATION
Given a sequence of n operations:	

a1, a2, a3 .. an

What is the running time of the whole sequence?

There are algorithms for which the amortized bound is
provably better than the achievable worst-case bound 	

e.g. Union-Find

amortizediΣΣactuali ≤
i=1 i=1

k k

∀k≤n.

BANKER’S METHOD	

• Assign a price to each operation.	

• Store savings/borrowings in state around the data structure	

• If no account has any debt, then

amortizediΣΣactuali ≤
i=1 i=1

k k

∀k≤n.

PHYSICIST’S METHOD
• Start from savings and derive costs per operation	

• Assign a “potential” Φ to each state in the data structure	

• The amortized cost is actual cost plus the change in potential.

amortizedi = actuali + Φi - Φi-1

actuali = amortizedi + Φi-1 - Φi

• Amortization holds if Φ0 = 0 and Φn ≥ 0

NUMBER SYSTEMS

• Unary - Linked List	

• Binary - Bentley-Saxe	

• Skew-Binary - Okasaki’s Random Access Lists	

• Zeroless Binary - ?

0 0
1 1
2 1 0
3 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0

ZEROLESS BINARY

• Digits are all 1, 2.	

• Unique representation

0 0
1 1
2 2
3 1
4 1 2
5 1 1
6 2 2
7 2 1
8 3 2
9 3 1
10 1 2 2

MODIFIED ZEROLESS BINARY

• Digits are all 1, 2 or 3.	

• Only the leading digit can be 1	

• Unique representation	

• Just the right amount of lag

0 0
1 1
2 2
3 3
4 1 2
5 1 3
6 2 2
7 2 3
8 3 2
9 3 3	

10 1 2 2

0
1 1
2 2
3 1
4 1 2
5 1 1
6 2 2
7 2 1
8 1 1 2
9 1 1 1
10 1 2 2

0
1 1
2 2
3 3
4 1 2
5 1 3
6 2 2
7 2 3
8 3 2
9 3 3
10 1 2 2

0 0
1 1
2 1 0
3 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0

Binary Zeroless Binary
Modified	

Zeroless Binary

PERSISTENTLY AMORTIZED
!
data Map k a
 = M0
 | M1 !(Chunk k a)
 | M2 !(Chunk k a) !(Chunk k a) (Chunk k a) !(Map k a)
 | M3 !(Chunk k a) !(Chunk k a) !(Chunk k a) (Chunk k a) !(Map k a)
!
data Chunk k a = Chunk !(Array k) !(Array a)
!
— | O(log(N)/B) persistently amortized. Insert an element.
insert :: (Ord k, Arrayed k, Arrayed v) => k -> v -> Map k v -> Map k v
insert k0 v0 = go $ Chunk (singleton k0) (singleton v0) where
 go as M0 = M1 as
 go as (M1 bs) = M2 as bs (merge as bs) M0
 go as (M2 bs cs bcs xs) = M3 as bs cs bcs xs
 go as (M3 bs _ _ cds xs) = cds `seq` M2 as bs (merge as bs) (go cds xs)
{-# INLINE insert #-}

WHY DO WE CARE?

• Inserts are ~7-10x faster than Data.Map and get faster with scale!	

• The structure is easily mmap’d in from disk for offline storage	

• This lets us build an “unboxed Map” from unboxed vectors.	

• Matches insert performance of a B-Tree without knowing B. 	

• Nothing to tune.

PROBLEMS

• We only matched insert performance, but not query performance.	

• We have to query O(log n) structures to answer queries.

• Searching the structure we’ve defined so far takes
O(log2(N/B) + a/B)

• Search m sorted arrays each of sizes up to n at the same time.	

• Precalculations are allowed, but not a huge explosion in space	

• Very useful for many computational geometry problems.	

• Naïve Solution: Binary search each separately in O(m log n)	

• With Fractional Cascading: O (log mn) = O(log m + log n)

FRACTIONAL CASCADING

FRACTIONAL CASCADING

• Consider 2 sorted lists e.g.

• Copy every kth entry from the second into the first

1 3 10 20 35 40

2 5 6 8 11 21 36 37 38 41 42

1 2 3 8 10 20 35 36 40 41

2 5 6 8 11 21 36 37 38 41 42

• After a failed search in the first, you now have to search a
constant k-sized fragment of the second.

FRACTIONAL CASCADING

• New trick:	

• We copy every kth entry up from the next largest array. 	

• If we had a way to count the number of forwarding pointers
up to a given position we could just multiply that # by k and
not have to store the pointers themselves

IMPLICIT

SUCCINCT DICTIONARIES
• Given a bit vector of length n containing k ones e.g.

0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0

• There exist () such vectors.	

• Knowing nothing else we could store that choice in H0 bits

k
n

H0 = log () + 1k
n

rankα(i) = # of occurrences of α in S[0..i)
selectα(i) = position of the ith α in S

IMPLICIT FORWARDING

• Store a bitvector for each key in the vector that indicates if the
key is a forwarding pointer, or has a value associated.	

• To index into the values use rank up to a given position
instead.	

• This can also be used to represent deletion flags succinctly.	

• In practice we can use non-succinct algorithms. (rank9,
poppy)

NON-SUCCINCT
DICTIONARIES

• Given a bit vector of length n containing k ones e.g.

0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0

• With just 2n total space we get an O(1) version of:	

rankα(S,i) = # of occurrences of α in S[0..i)

• Break it into chunks of size log(n) (or 64)	

• Store a prefix sum up to each chunk

BLOOM-FILTERS

• Associate a hierarchical Bloom filter with each array tuned to a
false positive rate that balances the cost of the cache misses for
the binary search against the cost of hashing into the filter.	

• Improves upon a version of the “Stratified Doubling Array”

{42}

+

+ + +

• Not Cache-Oblivious!

BENEFITS

• Match the asymptotic B-Tree performance without knowing B	

• Fully persistent, can edit previous versions.	

• Always uses sequential writes on disk	

• We get ~10x faster inserts than Data.Map	

• We can reuse these techniques for other problem domains

QUESTIONS?

• The code is on github:	

http://github.com/ekmett/structures
http://github.com/ekmett/succinct

http://github.com/ekmett/structures
http://github.com/ekmett/succinct

NON-SUCCINCT
DICTIONARIES

• Given a bit vector of length n containing k ones e.g.

0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0

• With just 2n total space we get an O(1) version of:	

rankα(S,i) = # of occurrences of α in S[0..i)

• Break it into chunks of size log(n) (or 64)	

• Store a prefix sum up to each chunk

SUCCINCT TREES

• Parsed data takes several times more space than the raw format	

• Pointers and ADTs are big	

• How can we do better?

JACOBSON TREES
• Start with an implicit tree

2k 2k+1

k `div` 2

