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BUILDING  BETTER   TOOLS

• Cache-Oblivious Algorithms	



• Succinct Data Structures



• Production: 

• empty :: Ord k => Map k a 

• insert :: Ord k => k -> a -> Map k a -> Map k a 

• Consumption: 

• null :: Ord k => Map k a -> Bool 

• lookup :: Ord k => k -> Map k a -> Maybe a

DATA.MAP



• Built by Daan Leijen. 	



• Maintained by Johan Tibell and Milan Straka.	



• Battle Tested. Highly Optimized. In use since 1998.	



• Built on Trees of Bounded Balance	



• The defacto benchmark of performance.	



• Designed for the Pointer/RAM Model

DATA.MAP



WHAT  I  WANT

• I need a Map that has support for very efficient range queries	



• It also needs to support very efficient writes	



• It needs to support unboxed data	



• ...and I don’t want to give up all the conveniences of Haskell	



• But I can let point query performance suffer a bit.



THE  DUMBEST  THING  
THAT CAN  WORK

• Take an array of (key, value) pairs sorted by key and arrange it 
contiguously in memory	



• Binary search it.	



• Eventually your search falls entirely within a cache line.



BINARY SEARCH

— | Binary search assuming 0 <= l <= h.  
— Returns h if the predicate is never True over [l..h) 
!
search :: (Int -> Bool) -> Int -> Int -> Int 
search p = go where 
  go l h 
    | l == h    = l 
    | p m       = go l m 
    | otherwise = go (m+1) h 
    where m = l + unsafeShiftR (h - l) 1 
{-# INLINE search #-}



OFFSET BINARY SEARCH

— | Offset binary search assuming 0 <= l <= h.  
— Returns h if the predicate is never True over [l..h) 
!
search :: (Int -> Bool) -> Int -> Int -> Int 
search p = go where 
  go l h 
    | l == h    = l 
    | p m       = go l m 
    | otherwise = go (m+1) h 
    where hml = h - l 
          m = l + unsafeShiftR hml 1 + unsafeShiftR hml 6 
{-# INLINE search #-}

Pro Tip!

Avoids thrashing the same lines in k-way set 
associative caches near the root.



RAM  MODEL

• Almost everything you do in Haskell assumes this model	



• Good for ADTs, but not a realistic model of today’s hardware



DATA.MAP

“Binary search trees of bounded balance”
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IO  MODEL

CPU + 
Memory	



Disk	



• Can Read/Write Contiguous Blocks of Size B	



• Can Hold M/B blocks in working memory	



• All other operations are “Free”

N

B



B-TREES

• Occupies O(N/B) blocks worth of space	



• Update in time O(log(N/B))	



• Search O(log(N/B) + a/B) where a is the result set size	





IO  MODEL

CPU + 
Registers L1	

 L2	

 L3	

 Main 

Memory	

 Disk	





• Huge numbers of constants to tune	



• Optimizing for one necessarily sub-optimizes others	



• Caches grows exponentially in size and slowness
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• Can Read/Write Contiguous Blocks of Size B	


• Can Hold M/B Blocks in working memory	


• All other operations are “Free”	


• But now you don’t get to know M or B!	


• Various refinements exist e.g. the tall cache assumption

CACHE-OBLIVIOUS MODEL

CPU + 
Memory	



Disk	



M

B



• If your algorithm is asymptotically optimal for an unknown 
cache with an optimal replacement policy it is asymptotically 
optimal for all caches at the same time.	



• You can relax the assumption of optimal replacement and 
model LRU, k-way set associative caches, and the like via 
caches by modest reductions in M.

CACHE-OBLIVIOUS MODEL
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• As caches grow taller and more complex it becomes harder 
to tune for them at the same time. Tuning for one provably 
renders you suboptimal for others. 	



• The overhead of this model is largely compensated for by ease 
of portability and vastly reduced tuning.	



• This model is becoming more and more true over time!

CACHE-OBLIVIOUS MODEL
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DYNAMIZATION

• We have a static structure that does what we want	



• How can we make it updatable?	



• Bentley and Saxe gave us one way in 1980.



BENTLEY-SAXE

• Linked list of our static structure. 	



• Each a power of 2 in size.	



• The list is sorted strictly monotonically by size. 	



• Bigger / older structures are later in the list.	



• We need a way to merge query results.	



• Here we just take the first.



BENTLEY-SAXE
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BENTLEY-SAXE
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Now let’s insert 8



BENTLEY-SAXE
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Next insert causes a cascade of carries! 	


Worst-case insert time is O(N/B) 

Amortized insert time is O((log N)/B) 
We computed that oblivous to B



SLOPPY AND DYSFUNCTIONAL

• Chris Okasaki would not approve!	



• Our analysis used assumed linear/ephemeral access.	



• A sufficiently long carry might rebuild the whole thing, but if you 
went back to the old version and did it again, it’d have to do it all 
over. 	



• You can’t earn credits and spend them twice!



AMORTIZATION
Given a sequence of n operations:	



a1, a2, a3 .. an 

What is the running time of the whole sequence?

There are algorithms for which the amortized bound is 
provably better than the achievable worst-case bound 	



e.g. Union-Find

amortizediΣΣactuali ≤
i=1 i=1

k k

∀k≤n.



BANKER’S METHOD	



• Assign a price to each operation.	



• Store savings/borrowings in state around the data structure	



• If no account has any debt, then

amortizediΣΣactuali ≤
i=1 i=1

k k

∀k≤n.



PHYSICIST’S METHOD
• Start from savings and derive costs per operation	



• Assign a “potential” Φ to each state in the data structure	



• The amortized cost is actual cost plus the change in potential.

amortizedi = actuali + Φi - Φi-1

actuali = amortizedi + Φi-1 - Φi

• Amortization holds if Φ0 = 0 and Φn ≥ 0



NUMBER SYSTEMS

• Unary - Linked List	



• Binary - Bentley-Saxe	



• Skew-Binary - Okasaki’s Random Access Lists	



• Zeroless Binary - ?

0 0
1 1
2 1 0
3 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0



ZEROLESS BINARY

• Digits are all 1, 2.	



• Unique representation

0 0
1 1
2 2
3 1
4 1 2
5 1 1
6 2 2
7 2 1
8 3 2
9 3 1
10 1 2 2



MODIFIED ZEROLESS BINARY

• Digits are all 1, 2 or 3.	



• Only the leading digit can be 1	



• Unique representation	



• Just the right amount of lag

0 0
1 1
2 2
3 3
4 1 2
5 1 3
6 2 2
7 2 3
8 3 2
9 3 3	


10 1 2 2



0
1 1
2 2
3 1
4 1 2
5 1 1
6 2 2
7 2 1
8 1 1 2
9 1 1 1
10 1 2 2

0
1 1
2 2
3 3
4 1 2
5 1 3
6 2 2
7 2 3
8 3 2
9 3 3
10 1 2 2

0 0
1 1
2 1 0
3 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0

Binary Zeroless Binary
Modified	



Zeroless Binary



PERSISTENTLY  AMORTIZED
!
data Map k a 
  = M0 
  | M1 !(Chunk k a) 
  | M2 !(Chunk k a) !(Chunk k a) (Chunk k a) !(Map k a) 
  | M3 !(Chunk k a) !(Chunk k a) !(Chunk k a) (Chunk k a) !(Map k a) 
!
data Chunk k a = Chunk !(Array k) !(Array a) 
!
— | O(log(N)/B) persistently amortized. Insert an element. 
insert :: (Ord k, Arrayed k, Arrayed v) => k -> v -> Map k v -> Map k v 
insert k0 v0 = go $ Chunk (singleton k0) (singleton v0) where 
  go as M0                 = M1 as 
  go as (M1 bs)            = M2 as bs (merge as bs) M0 
  go as (M2 bs cs bcs xs)  = M3 as bs cs bcs xs 
  go as (M3 bs _ _ cds xs) = cds `seq` M2 as bs (merge as bs) (go cds xs) 
{-# INLINE insert #-} 



WHY DO WE CARE?

• Inserts are ~7-10x faster than Data.Map and get faster with scale!	



• The structure is easily mmap’d in from disk for offline storage	



• This lets us build an “unboxed Map” from unboxed vectors.	



• Matches insert performance of a B-Tree without knowing B. 	



• Nothing to tune.



PROBLEMS

• We only matched insert performance, but not query performance.	



• We have to query O(log n) structures to answer queries.

• Searching the structure we’ve defined so far takes 
O(log2(N/B) + a/B)



• Search m sorted arrays each of sizes up to n at the same time.	



• Precalculations are allowed, but not a huge explosion in space	



• Very useful for many computational geometry problems.	



• Naïve Solution: Binary search each separately in O(m log n)	



• With Fractional Cascading: O (log mn) = O(log m + log n)

FRACTIONAL CASCADING



FRACTIONAL CASCADING

• Consider 2 sorted lists e.g. 

• Copy every kth entry from the second into the first

1 3 10 20 35 40

2 5 6 8 11 21 36 37 38 41 42

1 2 3 8 10 20 35 36 40 41

2 5 6 8 11 21 36 37 38 41 42

• After a failed search in the first, you now have to search a 
constant k-sized fragment of the second.



FRACTIONAL CASCADING

• New trick:	



• We copy every kth entry up from the next largest array. 	



• If we had a way to count the number of forwarding pointers 
up to a given position we could just multiply that # by k and 
not have to store the pointers themselves

IMPLICIT



SUCCINCT DICTIONARIES
• Given a bit vector of length n containing k ones e.g.

0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0

• There exist ( ) such vectors.	



• Knowing nothing else we could store that choice in H0 bits

k
n

H0 = log ( ) + 1k
n

rankα(i) = # of occurrences of α in S[0..i) 
selectα(i) = position of the ith α in S



IMPLICIT FORWARDING

• Store a bitvector for each key in the vector that indicates if the 
key is a forwarding pointer, or has a value associated.	



• To index into the values use rank up to a given position 
instead.	



• This can also be used to represent deletion flags succinctly.	



• In practice we can use non-succinct algorithms. (rank9, 
poppy)



NON-SUCCINCT 
DICTIONARIES

• Given a bit vector of length n containing k ones e.g.

0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0

• With just 2n total space we get an O(1) version of:	



rankα(S,i) = # of occurrences of α in S[0..i)

• Break it into chunks of size log(n) (or 64)	



• Store a prefix sum up to each chunk



BLOOM-FILTERS

• Associate a hierarchical Bloom filter with each array tuned to a 
false positive rate that balances the cost of the cache misses for 
the binary search against the cost of hashing into the filter.	



• Improves upon a version of the “Stratified Doubling Array”

{42}

+

+ + +

• Not Cache-Oblivious!



BENEFITS

• Match the asymptotic B-Tree performance without knowing B	



• Fully persistent, can edit previous versions.	



• Always uses sequential writes on disk	



• We get ~10x faster inserts than Data.Map	



• We can reuse these techniques for other problem domains



QUESTIONS?

• The code is on github:	



http://github.com/ekmett/structures
http://github.com/ekmett/succinct

http://github.com/ekmett/structures
http://github.com/ekmett/succinct


NON-SUCCINCT 
DICTIONARIES

• Given a bit vector of length n containing k ones e.g.

0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0

• With just 2n total space we get an O(1) version of:	



rankα(S,i) = # of occurrences of α in S[0..i)

• Break it into chunks of size log(n) (or 64)	



• Store a prefix sum up to each chunk



SUCCINCT  TREES

• Parsed data takes several times more space than the raw format	



• Pointers and ADTs are big	



• How can we do better?



JACOBSON TREES
• Start with an implicit tree

2k 2k+1

k `div` 2


