-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathIT2TSK_NeuroFM_LS_testExample2func.m
71 lines (70 loc) · 2.01 KB
/
IT2TSK_NeuroFM_LS_testExample2func.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
function Results=IT2TSK_NeuroFM_LS_testExample2func(J_max,Iter)
s=2;
n=s;
DNum=21;
if DNum<J_max
error('Trainning data size must be >= %d',J_max)
end
N=DNum^2;
%% praparing data
%
x1=linspace(0,pi,DNum);
x2=linspace(0,pi,DNum);
[X1,X2]=meshgrid(x1,x2);
In=[X1(:),X2(:)];
In_dim=size(In);
Out1=X2.*sin(X1)+X1.*cos(X2);
%surfc(X1,X2,Out1)
%% Type reduction method:
QBFAStruc.bound=[min(In(:));max(In(:));[0.3;0.8]];% bound of center m and width sigma
%%
Net(1).IterTrainMax=10;
Net(1).mm=0.5;
Net(1).nn=1-Net(1).mm;
Net(1).rho=0.01; % thresh old
Net(1).tau=0.05; % threshold
Net(1).Data={In,Out1(:)};
Net(1).In_dim=In_dim;
Net(1).width = abs(max(In(:))-min(In(:)))/(4*J_max);
Net(1).DataStat=[minmax(In(:)');minmax(Out1(:)')];
Net(1).Numb=N;
Net(1).J_max=J_max;
Net(1).DataDim=[In_dim(2),size(Out1,2)];
Net(1).Sj=zeros(1,J_max); % Size of cluster j
Net(1).Dim={s,[s,J_max],J_max,1}; % Dimension of network
Net(2).m={zeros(s,J_max),zeros(s,J_max)}; % mean vector UMF/LMF
Net(2).m_Len=s*J_max;
Net(2).sigma_Len=s*J_max;
Net(2).sigma0=0.3*ones(In_dim(2),1);
Net(2).sigma={ones(s,J_max),ones(s,J_max)}; % derivation vector
Net(3).Cj=zeros(J_max,In_dim(2)+1); % height of cluster
Net(3).Cstar=zeros(1,J_max);
Net(3).BSVD.A=zeros(N,J_max);
Net(1).Gj=zeros(N,J_max); % firing strength
%% UD parameters
coli=1;
if s==2
temp=minmax(In');
min_ranges_p=temp(:,1)';
max_ranges_p=temp(:,2)';
elseif s==3
min_ranges_p=[-15,10,10]
max_ranges_p=[15, 30,20]
end
[X_scaled,Xij]=UniformDesignWithScale(J_max,s,coli,min_ranges_p,max_ranges_p);
plot(X_scaled(:,1),X_scaled(:,2),'r*')
pause(1)
close all
%%
N0=55; % Online Sequence LS
Block=1;
for ite=1:Iter
Net=IT2TSKNeuroFM_LS(Net,QBFAStruc,X_scaled,N0,Block);
Results(ite,:)=[Net(4).MSE,Net(4).NRMSE];
end
% Net(2).m{1}
% Net(2).sigma{1}
% Net(2).sigma{2}
% sprintf('%4d',Net(4).MSE)
% Net(4).RMSE
% sprintf('%4d',Net(4).NRMSE)