-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathvisualize.py
123 lines (109 loc) · 4.11 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from network import make_network
import tqdm
import torch
import os
import nms
import post_process
from dataset.data_loader import make_demo_loader
from train.model_utils.utils import load_network
import argparse
import importlib
import matplotlib.pyplot as plt
import numpy as np
from itertools import cycle
parser = argparse.ArgumentParser()
parser.add_argument("config_file", help='/path/to/config_file.py')
parser.add_argument("image_dir", help='/path/to/images')
parser.add_argument("--checkpoint", default='', help='/path/to/model_weight.pth')
parser.add_argument("--ct_score", default=0.3, help='threshold to filter instances', type=float)
parser.add_argument("--with_nms", default=False, type=bool,
help='if True, will use nms post-process operation', choices=[True, False])
parser.add_argument("--with_post_process", default=False, type=bool,
help='if True, Will filter out some jaggies', choices=[True, False])
parser.add_argument("--stage", default='final-dml', help='which stage of the contour will be generated',
choices=['init', 'coarse', 'final', 'final-dml'])
parser.add_argument("--output_dir", default='None', help='/path/to/output_dir')
parser.add_argument("--device", default=0, type=int, help='device idx')
args = parser.parse_args()
def get_cfg(args):
cfg = importlib.import_module('configs.' + args.config_file).config
cfg.test.with_nms = bool(args.with_nms)
cfg.test.test_stage = args.stage
cfg.test.ct_score = args.ct_score
return cfg
def bgr_to_rgb(img):
return img[:, :, [2, 1, 0]]
def unnormalize_img(img, mean, std):
"""
img: [3, h, w]
"""
img = img.detach().cpu().clone()
img *= torch.tensor(std).view(3, 1, 1)
img += torch.tensor(mean).view(3, 1, 1)
min_v = torch.min(img)
img = (img - min_v) / (torch.max(img) - min_v)
return img
class Visualizer(object):
def __init__(self, cfg):
self.cfg = cfg
def visualize_ex(self, output, batch, save_dir=None):
inp = bgr_to_rgb(unnormalize_img(batch['inp'][0], self.cfg.data.mean,
self.cfg.data.std).permute(1, 2, 0))
ex = output['py']
ex = ex[-1] if isinstance(ex, list) else ex
ex = ex.detach().cpu().numpy()
fig, ax = plt.subplots(1, figsize=(20, 10))
fig.tight_layout()
ax.axis('off')
ax.imshow(inp)
colors = np.array([
[31, 119, 180],
[255, 127, 14],
[46, 160, 44],
[214, 40, 39],
[148, 103, 189],
[140, 86, 75],
[227, 119, 194],
[126, 126, 126],
[188, 189, 32],
[26, 190, 207]
]) / 255.
np.random.shuffle(colors)
colors = cycle(colors)
for i in range(len(ex)):
color = next(colors).tolist()
poly = ex[i]
poly = np.append(poly, [poly[0]], axis=0)
ax.plot(poly[:, 0], poly[:, 1], color=color, lw=2)
if save_dir is not None:
plt.savefig(fname=save_dir, bbox_inches='tight')
plt.close()
else:
plt.show()
def visualize(self, output, batch):
if args.output_dir != 'None':
file_name = os.path.join(args.output_dir, batch['meta']['img_name'][0])
else:
file_name = None
self.visualize_ex(output, batch, save_dir=file_name)
def run_visualize(cfg):
network = make_network.get_network(cfg).cuda()
load_network(network, args.checkpoint)
network.eval()
data_loader = make_demo_loader(args.image_dir, cfg=cfg)
visualizer = Visualizer(cfg)
for batch in tqdm.tqdm(data_loader):
for k in batch:
if k != 'meta':
batch[k] = batch[k].cuda()
with torch.no_grad():
output = network(batch['inp'], batch)
if args.with_post_process:
post_process.post_process(output)
if args.with_nms:
nms.post_process(output)
visualizer.visualize(output, batch)
if __name__ == "__main__":
cfg = get_cfg(args)
torch.cuda.set_device(args.device)
run_visualize(cfg)