-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf_smooth.m
125 lines (118 loc) · 2.98 KB
/
tf_smooth.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
%TF_SMOOTH Two filter based Smoother
%
% Syntax:
% [M,P] = TF_SMOOTH(M,P,Y,A,Q,H,R,[use_inf])
%
% In:
% M - NxK matrix of K mean estimates from Kalman filter
% P - NxNxK matrix of K state covariances from Kalman Filter
% Y - Sequence of K measurement as DxK matrix
% A - NxN state transition matrix.
% Q - NxN process noise covariance matrix.
% H - DxN Measurement matrix.
% R - DxD Measurement noise covariance.
% use_inf - If information filter should be used (default 1)
%
% Out:
% M - Smoothed state mean sequence
% P - Smoothed state covariance sequence
%
% Description:
% Two filter linear smoother algorithm. Calculate "smoothed"
% sequence from given Kalman filter output sequence
% by conditioning all steps to all measurements.
%
% Example:
% m = m0;
% P = P0;
% MM = zeros(size(m,1),size(Y,2));
% PP = zeros(size(m,1),size(m,1),size(Y,2));
% for k=1:size(Y,2)
% [m,P] = kf_predict(m,P,A,Q);
% [m,P] = kf_update(m,P,Y(:,k),H,R);
% MM(:,k) = m;
% PP(:,:,k) = P;
% end
% [SM,SP] = tf_smooth(MM,PP,A,Q,H,R,Y);
%
% See also:
% KF_PREDICT, KF_UPDATE
% History:
%
% 02.8.2007 JH Changed the name to tf_smooth
% 26.3.2007 JH Fixed a bug in backward filter with observations having
% having more than one dimension.
%
% Copyright (C) 2006 Simo Särkkä
% 2007 Jouni Hartikainen
%
% $Id$
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
%
function [M,P] = tf_smooth(M,P,Y,A,Q,H,R,use_inf)
%
% Check which arguments are there
%
if nargin < 4
error('Too few arguments');
end
if nargin < 8
use_inf = [];
end
if isempty(use_inf)
use_inf = 1;
end
%
% Run the backward filter
%
if use_inf
zz = zeros(size(M));
SS = zeros(size(P));
IR = inv(R);
IQ = inv(Q);
z = zeros(size(M,1),1);
S = zeros(size(M,1),size(M,1));
for k=size(M,2):-1:1
G = S / (S + IQ);
S = A' * (eye(size(M,1)) - G) * S * A;
z = A' * (eye(size(M,1)) - G) * z;
zz(:,k) = z;
SS(:,:,k) = S;
S = S + H'*IR*H;
z = z + H'*IR*Y(:,k);
end
else
BM = zeros(size(M));
BP = zeros(size(P));
IA = inv(A);
IQ = IA*Q*IA';
fm = zeros(size(M,1),1);
fP = 1e12*eye(size(M,1));
BM(:,end) = fm;
BP(:,:,end) = fP;
for k=(size(M,2)-1):-1:1
[fm,fP] = kf_update(fm,fP,Y(:,k+1),H,R);
[fm,fP] = kf_predict(fm,fP,IA,IQ);
BM(:,k) = fm;
BP(:,:,k) = fP;
end
end
%
% Combine estimates
%
if use_inf
for k=1:size(M,2)-1
G = P(:,:,k) * SS(:,:,k) / (eye(size(M,1)) + P(:,:,k) * SS(:,:,k));
P(:,:,k) = inv(inv(P(:,:,k)) + SS(:,:,k));
M(:,k) = M(:,k) + P(:,:,k) * zz(:,k) - G * M(:,k);
end
else
for k=1:size(M,2)-1
tmp = inv(inv(P(:,:,k)) + inv(BP(:,:,k)));
M(:,k) = tmp * (P(:,:,k)\M(:,k) + BP(:,:,k)\BM(:,k));
P(:,:,k) = tmp;
end
end