-
Notifications
You must be signed in to change notification settings - Fork 0
/
infoGAN.py
384 lines (297 loc) · 17.2 KB
/
infoGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#-*- coding: utf-8 -*-
from __future__ import division
import os
import time
import tensorflow as tf
import numpy as np
from ops import *
from utils import *
class infoGAN(object):
model_name = "infoGAN" # name for checkpoint
def __init__(self, sess, epoch, batch_size, z_dim, dataset_name, checkpoint_dir, result_dir, log_dir, SUPERVISED=True):
self.sess = sess
self.dataset_name = dataset_name
self.checkpoint_dir = checkpoint_dir
self.result_dir = result_dir
self.log_dir = log_dir
self.epoch = epoch
self.batch_size = batch_size
if dataset_name == 'mnist' or dataset_name == 'fashion-mnist':
# parameters
self.input_height = 28
self.input_width = 28
self.output_height = 28
self.output_width = 28
self.z_dim = z_dim # dimension of noise-vector
self.y_dim = 12 # dimension of code-vector (label+two features)
self.c_dim = 1
self.SUPERVISED = SUPERVISED # if it is true, label info is directly used for code
# train
self.learning_rate = 0.0002
self.beta1 = 0.5
# test
self.sample_num = 64 # number of generated images to be saved
# code
self.len_discrete_code = 10 # categorical distribution (i.e. label)
self.len_continuous_code = 2 # gaussian distribution (e.g. rotation, thickness)
# load mnist
self.data_X, self.data_y = load_mnist(self.dataset_name)
# get number of batches for a single epoch
self.num_batches = len(self.data_X) // self.batch_size
else:
raise NotImplementedError
def classifier(self, x, is_training=True, reuse=False):
# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
# Architecture : (64)5c2s-(128)5c2s_BL-FC1024_BL-FC128_BL-FC12S’
# All layers except the last two layers are shared by discriminator
# Number of nodes in the last layer is reduced by half. It gives better results.
with tf.variable_scope("classifier", reuse=reuse):
net = lrelu(bn(linear(x, 64, scope='c_fc1'), is_training=is_training, scope='c_bn1'))
out_logit = linear(net, self.y_dim, scope='c_fc2')
out = tf.nn.softmax(out_logit)
return out, out_logit
def discriminator(self, x, is_training=True, reuse=False):
# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
# Architecture : (64)4c2s-(128)4c2s_BL-FC1024_BL-FC1_S
with tf.variable_scope("discriminator", reuse=reuse):
net = lrelu(conv2d(x, 64, 4, 4, 2, 2, name='d_conv1'))
net = lrelu(bn(conv2d(net, 128, 4, 4, 2, 2, name='d_conv2'), is_training=is_training, scope='d_bn2'))
net = tf.reshape(net, [self.batch_size, -1])
net = lrelu(bn(linear(net, 1024, scope='d_fc3'), is_training=is_training, scope='d_bn3'))
out_logit = linear(net, 1, scope='d_fc4')
out = tf.nn.sigmoid(out_logit)
return out, out_logit, net
def generator(self, z, y, is_training=True, reuse=False):
# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
# Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S
with tf.variable_scope("generator", reuse=reuse):
# merge noise and code
z = concat([z, y], 1)
net = tf.nn.relu(bn(linear(z, 1024, scope='g_fc1'), is_training=is_training, scope='g_bn1'))
net = tf.nn.relu(bn(linear(net, 128 * 7 * 7, scope='g_fc2'), is_training=is_training, scope='g_bn2'))
net = tf.reshape(net, [self.batch_size, 7, 7, 128])
net = tf.nn.relu(
bn(deconv2d(net, [self.batch_size, 14, 14, 64], 4, 4, 2, 2, name='g_dc3'), is_training=is_training,
scope='g_bn3'))
out = tf.nn.sigmoid(deconv2d(net, [self.batch_size, 28, 28, 1], 4, 4, 2, 2, name='g_dc4'))
return out
def build_model(self):
# some parameters
image_dims = [self.input_height, self.input_width, self.c_dim]
bs = self.batch_size
""" Graph Input """
# images
self.inputs = tf.placeholder(tf.float32, [bs] + image_dims, name='real_images')
# labels
self.y = tf.placeholder(tf.float32, [bs, self.y_dim], name='y')
# noises
self.z = tf.placeholder(tf.float32, [bs, self.z_dim], name='z')
""" Loss Function """
## 1. GAN Loss
# output of D for real images
D_real, D_real_logits, _ = self.discriminator(self.inputs, is_training=True, reuse=False)
# output of D for fake images
G = self.generator(self.z, self.y, is_training=True, reuse=False)
D_fake, D_fake_logits, input4classifier_fake = self.discriminator(G, is_training=True, reuse=True)
# get loss for discriminator
d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=D_real_logits, labels=tf.ones_like(D_real)))
d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake_logits, labels=tf.zeros_like(D_fake)))
self.d_loss = d_loss_real + d_loss_fake
# get loss for generator
self.g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake_logits, labels=tf.ones_like(D_fake)))
## 2. Information Loss
code_fake, code_logit_fake = self.classifier(input4classifier_fake, is_training=True, reuse=False)
# discrete code : categorical
disc_code_est = code_logit_fake[:, :self.len_discrete_code]
disc_code_tg = self.y[:, :self.len_discrete_code]
q_disc_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=disc_code_est, labels=disc_code_tg))
# continuous code : gaussian
cont_code_est = code_logit_fake[:, self.len_discrete_code:]
cont_code_tg = self.y[:, self.len_discrete_code:]
q_cont_loss = tf.reduce_mean(tf.reduce_sum(tf.square(cont_code_tg - cont_code_est), axis=1))
# get information loss
self.q_loss = q_disc_loss + q_cont_loss
""" Training """
# divide trainable variables into a group for D and a group for G
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if 'd_' in var.name]
g_vars = [var for var in t_vars if 'g_' in var.name]
q_vars = [var for var in t_vars if ('d_' in var.name) or ('c_' in var.name) or ('g_' in var.name)]
# optimizers
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
self.d_optim = tf.train.AdamOptimizer(self.learning_rate, beta1=self.beta1) \
.minimize(self.d_loss, var_list=d_vars)
self.g_optim = tf.train.AdamOptimizer(self.learning_rate * 5, beta1=self.beta1) \
.minimize(self.g_loss, var_list=g_vars)
self.q_optim = tf.train.AdamOptimizer(self.learning_rate * 5, beta1=self.beta1) \
.minimize(self.q_loss, var_list=q_vars)
"""" Testing """
# for test
self.fake_images = self.generator(self.z, self.y, is_training=False, reuse=True)
""" Summary """
d_loss_real_sum = tf.summary.scalar("d_loss_real", d_loss_real)
d_loss_fake_sum = tf.summary.scalar("d_loss_fake", d_loss_fake)
d_loss_sum = tf.summary.scalar("d_loss", self.d_loss)
g_loss_sum = tf.summary.scalar("g_loss", self.g_loss)
q_loss_sum = tf.summary.scalar("g_loss", self.q_loss)
q_disc_sum = tf.summary.scalar("q_disc_loss", q_disc_loss)
q_cont_sum = tf.summary.scalar("q_cont_loss", q_cont_loss)
# final summary operations
self.g_sum = tf.summary.merge([d_loss_fake_sum, g_loss_sum])
self.d_sum = tf.summary.merge([d_loss_real_sum, d_loss_sum])
self.q_sum = tf.summary.merge([q_loss_sum, q_disc_sum, q_cont_sum])
def train(self):
# initialize all variables
tf.global_variables_initializer().run()
# graph inputs for visualize training results
self.sample_z = np.random.uniform(-1, 1, size=(self.batch_size , self.z_dim))
self.test_labels = self.data_y[0:self.batch_size]
self.test_codes = np.concatenate((self.test_labels, np.zeros([self.batch_size, self.len_continuous_code])),
axis=1)
# saver to save model
self.saver = tf.train.Saver()
# summary writer
self.writer = tf.summary.FileWriter(self.log_dir + '/' + self.model_name, self.sess.graph)
# restore check-point if it exits
could_load, checkpoint_counter = self.load(self.checkpoint_dir)
if could_load:
start_epoch = (int)(checkpoint_counter / self.num_batches)
start_batch_id = checkpoint_counter - start_epoch * self.num_batches
counter = checkpoint_counter
print(" [*] Load SUCCESS")
else:
start_epoch = 0
start_batch_id = 0
counter = 1
print(" [!] Load failed...")
# loop for epoch
start_time = time.time()
for epoch in range(start_epoch, self.epoch):
# get batch data
for idx in range(start_batch_id, self.num_batches):
batch_images = self.data_X[idx*self.batch_size:(idx+1)*self.batch_size]
# generate code
if self.SUPERVISED == True:
batch_labels = self.data_y[idx * self.batch_size:(idx + 1) * self.batch_size]
else:
batch_labels = np.random.multinomial(1,
self.len_discrete_code * [float(1.0 / self.len_discrete_code)],
size=[self.batch_size])
batch_codes = np.concatenate((batch_labels, np.random.uniform(-1, 1, size=(self.batch_size, 2))),
axis=1)
batch_z = np.random.uniform(-1, 1, [self.batch_size, self.z_dim]).astype(np.float32)
# update D network
_, summary_str, d_loss = self.sess.run([self.d_optim, self.d_sum, self.d_loss],
feed_dict={self.inputs: batch_images, self.y: batch_codes,
self.z: batch_z})
self.writer.add_summary(summary_str, counter)
# update G and Q network
_, summary_str_g, g_loss, _, summary_str_q, q_loss = self.sess.run(
[self.g_optim, self.g_sum, self.g_loss, self.q_optim, self.q_sum, self.q_loss],
feed_dict={self.inputs: batch_images, self.z: batch_z, self.y: batch_codes})
self.writer.add_summary(summary_str_g, counter)
self.writer.add_summary(summary_str_q, counter)
# display training status
counter += 1
print("Epoch: [%2d] [%4d/%4d] time: %4.4f, d_loss: %.8f, g_loss: %.8f" \
% (epoch, idx, self.num_batches, time.time() - start_time, d_loss, g_loss))
# save training results for every 300 steps
if np.mod(counter, 300) == 0:
samples = self.sess.run(self.fake_images,
feed_dict={self.z: self.sample_z, self.y: self.test_codes})
tot_num_samples = min(self.sample_num, self.batch_size)
manifold_h = int(np.floor(np.sqrt(tot_num_samples)))
manifold_w = int(np.floor(np.sqrt(tot_num_samples)))
save_images(samples[:manifold_h * manifold_w, :, :, :], [manifold_h, manifold_w],
'./' + check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_train_{:02d}_{:04d}.png'.format(
epoch, idx))
# After an epoch, start_batch_id is set to zero
# non-zero value is only for the first epoch after loading pre-trained model
start_batch_id = 0
# save model
self.save(self.checkpoint_dir, counter)
# show temporal results
self.visualize_results(epoch)
# save model for final step
self.save(self.checkpoint_dir, counter)
def visualize_results(self, epoch):
tot_num_samples = min(self.sample_num, self.batch_size)
image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
""" random noise, random discrete code, fixed continuous code """
y = np.random.choice(self.len_discrete_code, self.batch_size)
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
z_sample = np.random.uniform(-1, 1, size=(self.batch_size, self.z_dim))
samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot})
save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_all_classes.png')
""" specified condition, random noise """
n_styles = 10 # must be less than or equal to self.batch_size
np.random.seed()
si = np.random.choice(self.batch_size, n_styles)
for l in range(self.len_discrete_code):
y = np.zeros(self.batch_size, dtype=np.int64) + l
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot})
# save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
# check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_class_%d.png' % l)
samples = samples[si, :, :, :]
if l == 0:
all_samples = samples
else:
all_samples = np.concatenate((all_samples, samples), axis=0)
""" save merged images to check style-consistency """
canvas = np.zeros_like(all_samples)
for s in range(n_styles):
for c in range(self.len_discrete_code):
canvas[s * self.len_discrete_code + c, :, :, :] = all_samples[c * n_styles + s, :, :, :]
save_images(canvas, [n_styles, self.len_discrete_code],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_all_classes_style_by_style.png')
""" fixed noise """
assert self.len_continuous_code == 2
c1 = np.linspace(-1, 1, image_frame_dim)
c2 = np.linspace(-1, 1, image_frame_dim)
xv, yv = np.meshgrid(c1, c2)
xv = xv[:image_frame_dim,:image_frame_dim]
yv = yv[:image_frame_dim, :image_frame_dim]
c1 = xv.flatten()
c2 = yv.flatten()
z_fixed = np.zeros([self.batch_size, self.z_dim])
for l in range(self.len_discrete_code):
y = np.zeros(self.batch_size, dtype=np.int64) + l
y_one_hot = np.zeros((self.batch_size, self.y_dim))
y_one_hot[np.arange(self.batch_size), y] = 1
y_one_hot[np.arange(image_frame_dim*image_frame_dim), self.len_discrete_code] = c1
y_one_hot[np.arange(image_frame_dim*image_frame_dim), self.len_discrete_code+1] = c2
samples = self.sess.run(self.fake_images,
feed_dict={ self.z: z_fixed, self.y: y_one_hot})
save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_class_c1c2_%d.png' % l)
@property
def model_dir(self):
return "{}_{}_{}_{}".format(
self.model_name, self.dataset_name,
self.batch_size, self.z_dim)
def save(self, checkpoint_dir, step):
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir, self.model_name)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess,os.path.join(checkpoint_dir, self.model_name+'.model'), global_step=step)
def load(self, checkpoint_dir):
import re
print(" [*] Reading checkpoints...")
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir, self.model_name)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
counter = int(next(re.finditer("(\d+)(?!.*\d)",ckpt_name)).group(0))
print(" [*] Success to read {}".format(ckpt_name))
return True, counter
else:
print(" [*] Failed to find a checkpoint")
return False, 0