-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdlt_test.py
236 lines (176 loc) · 8.06 KB
/
dlt_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import src.tract_feat as tract_feat
import src.nn_model as nn_model
import whitematteranalysis as wma
import numpy as np
import argparse
import h5py
import os
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import Session
from sklearn.metrics import classification_report
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.utils import class_weight
from sklearn.metrics import confusion_matrix
CPU = False
if CPU:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = ""
num_cores = 4
config = ConfigProto(intra_op_parallelism_threads=num_cores,
inter_op_parallelism_threads=num_cores,
allow_soft_placement=True,
device_count={'CPU': 4})
session = Session(config=config)
# tf.keras.backend.set_session(session)
else:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Assign GPU usage
config = ConfigProto()
# fix the gpu memory usage portion
# config.gpu_options.per_process_gpu_memory_fraction = 0.75
# dynamic assign gpu memory
config.gpu_options.allow_growth = True
session = Session(config=config)
# session = tf.InteractiveSession(config=config)
# -----------------
# Parse arguments
# -----------------
parser = argparse.ArgumentParser(
description="Testing using a CNN model.",
epilog="Written by Fan Zhang, [email protected]")
parser.add_argument(
'inputModel',
help='Pretrained network model as an h5 file.')
parser.add_argument(
'inputFeat',
help='Input tract feature data as an h5 file.')
parser.add_argument(
'outputDir',
help='The output directory should be a new empty directory. It will be created if needed.')
parser.add_argument(
'-modelLabelName', type=str,
help='Label name in the model as an h5 file.')
parser.add_argument(
'-inputLabel', type=str,
help='Input ground truth label as an h5 file.')
parser.add_argument(
'-outPrefix', type=str,
help='A prefix string of all output files.')
parser.add_argument(
'-tractVTKfile', type=str,
help='Tractography data as a vtkPolyData file. If given, prediction will output tracts')
args = parser.parse_args()
script_name = '<test>'
if not os.path.exists(args.inputModel):
print(script_name, "Error: Input network model ", args.inputModel, "does not exist.")
exit()
if not os.path.exists(args.modelLabelName):
print(script_name, "Error: Input model label name", args.modelLabelName, "does not exist.")
exit()
if not os.path.exists(args.inputFeat):
print(script_name, "Error: Input feature ", args.inputFeat, "does not exist.")
exit()
if args.inputLabel is None:
print(script_name, "No input label is provided. Will perform prediction only.")
elif not os.path.exists(args.inputLabel):
print(script_name, "Error: Input label ", args.inputLabel, "does not exist.")
exit()
if not os.path.exists(args.outputDir):
print(script_name, "Output directory", args.outputDir, "does not exist, creating it.")
os.makedirs(args.outputDir)
''' Load data '''
# Load model parameters
print(script_name, 'Load parameters when training the model.')
params = np.load(args.inputModel.replace('_model.h5', '_params.npy'), allow_pickle=True).item(0)
# Load label names in the model
print(script_name, 'Load tracts names along with the model.')
with h5py.File(args.modelLabelName, "r") as f:
y_names_in_model = f['y_names'].value
# Load test data feature
with h5py.File(args.inputFeat, "r") as f:
print(script_name, 'Load input feature.')
x_test = f['feat'].value
# Generate ground truth labels for evaluation
if args.inputLabel is not None:
print(script_name, 'Load input label.')
with h5py.File(args.inputLabel, "r") as f:
y_test = f['label_array'].value.astype(int)
# y_value = f['label_values'].value
y_names = f['label_names'].value
# Used for generate ground truth label
y_test_orig = y_test.copy()
y_names_orig = y_names.copy()
# Generate final ground truth label
print(script_name, 'Generate FINAL ground truth label for evaluation.')
print(script_name, ' # Feat Preprocessing - combine subdiviations of some tracts including CBLM, SupT, and Others.')
# y_test contains index numbers for names of tracts, y_names are names of tracts
y_test, y_names, _ = tract_feat.combine_tract_subdiviations_and_merge_outliers(y_test, y_names, verbose=False)
if params['bilateral_feature']:
y_test, y_names, _ = tract_feat.bilateralize_feature(y_test, y_names, verbose=False)
y_test_ground_truth_final = tract_feat.update_y_test_based_on_model_y_names(y_test, y_names, y_names_in_model)
else:
y_test_ground_truth_final = None
if params['bilateral_feature']:
print(script_name, 'Make a bilateral copy for each fiber.')
x_test, _ = tract_feat.bilateral_X_data(
x_test)
# Perform predition of multiple tracts
print('')
print('===================================')
print('')
print(script_name, 'Start multi-tract prediction.')
print(script_name, 'x_test shape:', x_test.shape)
print(script_name, 'tracts to predict:', y_names_in_model)
# print script_name, 'tracts in the input data', y_names
output_multi_tract_predition_mask_path = os.path.join(args.outputDir,
args.outPrefix + '_multi_tract_specific_prediction_mask.h5')
output_multi_tract_predition_report_path = os.path.join(args.outputDir,
args.outPrefix + '_multi_tract_prediction_report.h5')
if not os.path.exists(output_multi_tract_predition_mask_path):
# Load model
model = load_model(args.inputModel)
y_prediction, prediction_report, con_matrix = nn_model.predict(model, x_test, y_data=y_test_ground_truth_final,
y_name=y_names_in_model, verbose=True)
if args.inputLabel is not None:
if prediction_report is not None:
with h5py.File(output_multi_tract_predition_report_path, "w") as f:
f.create_dataset('prediction_report', data=prediction_report)
f.create_dataset('con_matrix', data=con_matrix)
with h5py.File(output_multi_tract_predition_mask_path, "w") as f:
f.create_dataset('y_prediction', data=y_prediction)
del model
else:
print(script_name, 'Loading prediction result.')
with h5py.File(output_multi_tract_predition_mask_path, "r") as f:
y_prediction = f[
'y_prediction'].value
if args.tractVTKfile is not None:
print('')
print('===================================')
print('')
print(script_name, 'Output fiber tracts.')
# Tractography Parcellation
tract_prediction_mask = y_prediction
print(script_name, 'Load vtk:', args.tractVTKfile)
pd_whole_tract = wma.io.read_polydata(args.tractVTKfile)
print(script_name, ' # labels in mask:', np.unique(tract_prediction_mask))
print(script_name, ' # y_names:', y_names_in_model)
number_of_tracts = np.max(tract_prediction_mask) + 1
pd_t_list = wma.cluster.mask_all_clusters(pd_whole_tract, tract_prediction_mask, number_of_tracts,
preserve_point_data=False, preserve_cell_data=False, verbose=False)
output_tract_folder = os.path.join(args.outputDir, args.outPrefix + '_prediction_tracts_outlier_removed')
if not os.path.exists(output_tract_folder):
os.makedirs(output_tract_folder)
for t_idx in range(len(pd_t_list)):
pd_t = pd_t_list[t_idx]
if y_names_in_model is not None:
fname_t = os.path.join(output_tract_folder, y_names_in_model[t_idx].decode('UTF-8') + '.vtp')
else:
fname_t = os.path.join(output_tract_folder, 'tract_' + str(t_idx) + '.vtp')
print(script_name, 'output', fname_t)
wma.io.write_polydata(pd_t, fname_t)
print(script_name, 'Done! Tracts are in:', output_tract_folder)