forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAutomated_Marco.py
72 lines (51 loc) · 2.76 KB
/
Automated_Marco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow as tf
import csv
import os
import argparse
"""
usage:
Processes all .jpg, .png, .bmp and .gif files found in the specified directory and its subdirectories.
--PATH ( Path to directory of images or path to directory with subdirectory of images). e.g Path/To/Directory/
--Model_PATH path to the tensorflow model
"""
parser = argparse.ArgumentParser(description='Crystal Detection Program')
parser.add_argument('--PATH', type=str, help='path to image directory. Recursively finds all image files in directory and sub directories') # path to image directory or containing sub directories.
parser.add_argument('--MODEL_PATH', type=str, default='./savedmodel',help='the file path to the tensorflow model ')
args = vars(parser.parse_args())
PATH = args['PATH']
model_path = args['MODEL_PATH']
crystal_images = [os.path.join(dp, f) for dp, dn, filenames in os.walk(PATH) for f in filenames if os.path.splitext(f)[1] in ['.jpg','png','bmp','gif']]
size = len(crystal_images)
def load_images(file_list):
for i in file_list:
files = open(i,'rb')
yield {"image_bytes":[files.read()]},i
iterator = load_images(crystal_images)
with open(PATH +'results.csv', 'w') as csvfile:
Writer = csv.writer(csvfile, delimiter=' ',quotechar=' ', quoting=csv.QUOTE_MINIMAL)
predicter= tf.contrib.predictor.from_saved_model(model_path)
dic = {}
k = 0
for _ in range(size):
data,name = next(iterator)
results = predicter(data)
vals =results['scores'][0]
classes = results['classes'][0]
dictionary = dict(zip(classes,vals))
print('Image path: '+ name+' Crystal: '+str(dictionary[b'Crystals'])+' Other: '+ str(dictionary[b'Other'])+' Precipitate: '+ str(dictionary[b'Precipitate'])+' Clear: '+ str(dictionary[b'Clear']))
Writer.writerow(['Image path: '+ name,'Crystal: '+str(dictionary[b'Crystals']),'Other: '+ str(dictionary[b'Other']),'Precipitate: '+ str(dictionary[b'Precipitate']),'Clear: '+ str(dictionary[b'Clear'])])