forked from keunwoochoi/transfer_learning_music
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2_main_knn_svm_transfer.py
288 lines (239 loc) · 11 KB
/
2_main_knn_svm_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
""" .py version of 'knn and svm - for many tasks.ipynb'
After using mid_layer features, it's diverging from the ipython notebook - the notebook is outdated now.
"""
import matplotlib
import matplotlib.pyplot as plt
import multiprocessing
plt.style.use('ggplot')
font = {'family': 'consolas',
'weight': 'light',
'size': 12}
matplotlib.rc('font', **font)
ggplot_colors = [plt.rcParams['axes.color_cycle'][i] for i in [0, 1, 2, 3, 4, 5, 6]]
import os
import sys
import numpy as np
import librosa
import time
import sklearn
import pdb
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC, SVR
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import PredefinedSplit
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from utils_featext import OptionalStandardScaler
from sklearn.pipeline import Pipeline
import pandas as pd
import logging
import cPickle as cP
PATH_CLS = 'data_classifiers/' # save classifiers
FOLDER_CSV = 'data_csv/'
FOLDER_FEATS = 'data_feats/'
FOLDER_RESULTS = 'result_transfer/'
try:
os.mkdir(FOLDER_RESULTS)
except:
pass
def load_xy_many(taskname, featname='mine', npy_suffix='', logger=None, mid_layer=4):
""" wrapper for load_xy() for loading and concatenating multiple of them. """
if featname == 'mfcc':
x, y = load_xy(taskname, featname, npy_suffix, logger, mid_layer=mid_layer)
elif featname == 'mine':
for l_idx, mid_layer_num in enumerate(mid_layer):
if l_idx == 0:
x, y = load_xy(taskname, featname, npy_suffix, logger, mid_layer=mid_layer_num)
else:
x_new, _ = load_xy(taskname, featname, npy_suffix, logger, mid_layer=mid_layer_num)
x = np.concatenate((x, x_new), axis=1)
elif featname == 'mfcc+12345':
x, _ = load_xy_many(taskname, 'mfcc', npy_suffix, logger, mid_layer)
x_12345, y = load_xy_many(taskname, 'mine', npy_suffix, logger, [0, 1, 2, 3, 4])
x = np.concatenate((x, x_12345), axis=1)
return x, y
def load_xy(task_name, feat_name='mine', npy_suffix='', logger=None, mid_layer=4):
"""
:param task_name:
:param feat_name:
:param npy_suffix:
:param logger:
:param mid_layer: ignired if 'mfcc' is used
:return:
"""
assert task_name in ('ballroom_extended', 'gtzan_genre', 'gtzan_speechmusic',
'emoMusic_a', 'emoMusic_v', 'jamendo_vd', 'urbansound')
# logger.info('load_xy({}, {}, mid_layer: {}, npy_suffix: {})...'.format(task_name, feat_name, mid_layer, npy_suffix))
# X
csv_filename = '{}.csv'.format(task_name)
if feat_name == 'mine':
if task_name.startswith('emoMusic'):
if mid_layer == 4: # For the last layer, use Max-Pooled one
npy_filename = '{}{}.npy'.format('emoMusic', npy_suffix)
else: # For the others, use Average-Pooled ones
npy_filename = '{}_layer_{}{}.npy'.format('emoMusic', mid_layer, npy_suffix)
else:
if mid_layer == 4:
npy_filename = '{}{}.npy'.format(task_name, npy_suffix)
else:
npy_filename = '{}_layer_{}{}.npy'.format(task_name, mid_layer, npy_suffix)
elif feat_name == 'mfcc':
if task_name.startswith('emoMusic'):
npy_filename = '{}_mfcc.npy'.format('emoMusic')
else:
npy_filename = '{}_mfcc.npy'.format(task_name)
x = np.load(os.path.join(FOLDER_FEATS, npy_filename))
# Y
if task_name == 'emoMusic_v':
csv_filename = '{}.csv'.format('emoMusic')
df = pd.DataFrame.from_csv(os.path.join(FOLDER_CSV, csv_filename))
y = df['label_valence']
elif task_name == 'emoMusic_a':
csv_filename = '{}.csv'.format('emoMusic')
df = pd.DataFrame.from_csv(os.path.join(FOLDER_CSV, csv_filename))
y = df['label_arousal']
else:
y = pd.DataFrame.from_csv(os.path.join(FOLDER_CSV, csv_filename))['label']
return x, y
def save_result(featname, taskname, classifiername, score):
"""featname: string, taskname:string, score:float"""
filename = 'T_{}_F_{}_CL_{}.npy'.format(taskname, featname, classifiername)
np.save(os.path.join(FOLDER_RESULTS, filename), score)
def cross_validate(featnames, tasknames, cvs, classifiers, gps, logger, n_jobs, npy_suffix='', mid_layer=4):
'''featnames: list of string, ['mine', 'mfcc']
- tasknames = list of stringm ['ballroom_extended', 'gtzan_genre', 'gtzan_speechmusic',
'emoMusic', 'jamendo_vc', 'urbansound']
- cvs: list of cv, 10 for rest, split arrays for urbansound and jamendo_vd
- classifier: list of classifier class, e.g [KNeighborsClassifier, SVC]
- gps: list of gp, e.g. [{"n_neighbors":[1, 2, 8, 12, 16]}, {"C":[0.1, 8.0], "kernel":['linear', 'rbf']}]
- mid_layer: scalar, or list of scalar .
'''
np.random.seed(1209)
if not isinstance(mid_layer, list):
mid_layer = [mid_layer]
logger.info('')
logger.info('--- Cross-validation started for {} ---'.format(''.join([str(i) for i in mid_layer])))
for featname in featnames:
logger.info(' * feat_name: {} ---'.format(featname))
for classifier, gp in zip(classifiers, gps):
clname = classifier.__name__
logger.info(' - classifier: {} ---'.format(clname))
for taskname, cv in zip(tasknames, cvs):
logger.info(' . task: {} ---'.format(taskname))
model_filename = 'clf_{}_{}_{}.cP'.format(featname, taskname, clname)
x, y = load_xy_many(taskname, featname, npy_suffix, logger, mid_layer=mid_layer)
estimators = [('stdd', OptionalStandardScaler()), ('clf', classifier())]
pipe = Pipeline(estimators)
if isinstance(gp, dict): # k-nn or svm with single kernel
params = {'stdd__on': [True, False]}
params.update({'clf__' + key: value for (key, value) in gp.iteritems()})
elif isinstance(gp, list): # svm: grid param can be a list of dictionaries
params = []
for dct in gp: # should be dict of list for e.g. svm
sub_params = {'stdd__on': [True, False]}
sub_params.update({'clf__' + key: value for (key, value) in dct.iteritems()})
params.append(sub_params)
clf = GridSearchCV(pipe, params, cv=cv, n_jobs=n_jobs, pre_dispatch='8*n_jobs').fit(x, y)
logger.info(' . best score {}'.format(clf.best_score_))
logger.info(clf.best_params_)
print('best score of {}, {}, {}: {}'.format(featname,
taskname,
clname,
clf.best_score_))
print(clf.best_params_)
cP.dump(clf, open(os.path.join(PATH_CLS, model_filename), 'w'))
featname_midlayer = '{}_{}'.format(featname, ''.join([str(i) for i in mid_layer]))
save_result(featname_midlayer, taskname, clname, clf.best_score_)
def get_cv_jamendo():
task_name = 'jamendo_vd'
csv_filename = '{}.csv'.format(task_name)
df = pd.DataFrame.from_csv(os.path.join(FOLDER_CSV, csv_filename))
splits = 0 * np.array([df['category'] == 'train']).astype(int) \
+ 0 * np.array([df['category'] == 'valid']).astype(int) \
+ 1 * np.array([df['category'] == 'test']).astype(int)
# PredefinedSplit(df['category'])
train_idxs = np.where(np.any(splits == 0, axis=0))[0]
test_idxs = np.where(np.any(splits == 1, axis=0))[0]
cv_iter = [(train_idxs, test_idxs)]
return cv_iter
def get_cv_urbansound():
task_name = 'urbansound'
csv_filename = '{}.csv'.format(task_name)
df = pd.DataFrame.from_csv(os.path.join(FOLDER_CSV, csv_filename))
ps = PredefinedSplit(df['fold'])
return ps
def get_logger(task_idx, system_name='', memo=''):
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# create a file handler
handler = logging.FileHandler('feature-transfer_task_{}_{}.log'.format(task_idx, system_name))
handler.setLevel(logging.INFO)
# create a logging format
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
# add the handlers to the logger
logger.addHandler(handler)
logger.info('-' * 50)
logger.info('.' * 50)
logger.info('memo: {}'.format(memo))
logger.info('.' * 50)
logger.info('-' * 50)
return logger
def do_task_svm(task_idx, logger, n_jobs, which_emo='all'):
"""task_idx is 1 based, NOT zero-based.
"""
assert 1 <= task_idx <= 6
tasknames_cl = ['ballroom_extended', 'gtzan_genre', 'gtzan_speechmusic',
'jamendo_vd', 'urbansound']
cvs_cl = [10, 10, 10, get_cv_jamendo(), get_cv_urbansound()]
is_classification = True
if task_idx <= 3:
tasknames = tasknames_cl[task_idx - 1: task_idx]
cvs = cvs_cl[task_idx - 1: task_idx]
elif task_idx == 4: # Regression task.
is_classification = False
if which_emo == 'all':
tasknames = ['emoMusic_a', 'emoMusic_v']
cvs = [10]
elif which_emo == 'a':
tasknames = ['emoMusic_a']
cvs = [10]
elif which_emo == 'v':
tasknames = ['emoMusic_v']
cvs = [10, 10]
elif task_idx == 5:
tasknames = tasknames_cl[3:4]
cvs = cvs_cl[3:4]
elif task_idx == 6:
tasknames = tasknames_cl[4:5]
cvs = cvs_cl[4:5]
gps = [[{"C": [0.1, 2.0, 8.0, 32.0], "kernel": ['rbf'],
"gamma": [0.5 ** i for i in [3, 5, 7, 9, 11, 13]] + ['auto']},
{"C": [0.1, 2.0, 8.0, 32.0], "kernel": ['linear']}
]]
if is_classification:
classifiers = [SVC]
else:
classifiers = [SVR]
# FOR MFCC+12345 test,....
one_layers = [[i] for i in range(5)]
two_layers = [[i, j] for i in range(5) for j in range(i + 1, 5)]
three_layers = [[i, j, k] for i in range(5) for j in range(i + 1, 5) for k in range(j + 1, 5)]
four_layers = [range(4), range(1, 5)]
five_layers = [range(5)]
# all_layers = five_layers + four_layers + three_layers + two_layers + one_layers # 1, 2, 10, 10, 5
for mid_layer in all_layers:
cross_validate(['mine'], tasknames, cvs, classifiers, gps, logger, n_jobs, mid_layer=mid_layer)
# MFCC
cross_validate(['mfcc'], tasknames, cvs, classifiers, gps, logger, n_jobs, mid_layer=None)
cross_validate(['mfcc+12345'], tasknames, cvs, classifiers, gps, logger, n_jobs, mid_layer=None)
def main_all():
n_cpu = multiprocessing.cpu_count()
n_jobs = int(n_cpu * 0.8)
task_idxs = range(1, 7)
for task_idx in task_idxs:
logger = get_logger(task_idx)
do_task_svm(task_idx, logger, n_jobs)
if __name__ == '__main__':
main_all()