-
Notifications
You must be signed in to change notification settings - Fork 15
/
README
50 lines (45 loc) · 2.42 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
version 1.0 基本完整版
run_SAE_once(sparse + de-noising + 各种activation function )
这个是基本版,都是别人的工作。接下来版本应该是自己改进
main()
|---load_MNIST_data(images_file, labels_file, preprocess, is_show_images) // for train
|---load_MNIST_data(images_file, labels_file, preprocess, is_show_images) // for test
| |---load_MNIST_images(images_file, preprocess, is_show_images, varargin )
| | |---whitening(data)
| |---load_MNIST_labels(labels_file)
|
|---get_SAE_option(preOption_SAE, varargin)
| |---get_AE_option(preOption_AE)
| |---get_BP_option(preOption_BP)
|---get_BPNN_option(preOption_BPNN)
|
|---run_SAE_once(images_train, labels_train, images_test, labels_test, architecture, option_SAE, option_BPNN, is_disp_network, is_disp_info )
| |---train_SAE(input, output, architecture, preOption_SAE) // SAE
| | |---init_parameters(architecture_AE) <----------------------------------------------------------------------+
| | |---train_AE(input, theta_AE, architecture_AE, option_AE) |
| | | |---denoising_switch(input, count_AE, option_AE) |
| | | |---minFunc(fun, theta_AE, options) |
| | | | |---calc_AE_batch(input, theta_AE, architecture_AE, option_AE, (input_corrupted,) ~) |
| | | |---predict_NN(input, architecture_AE(1:2), theta_AE(W1,b1), option_AE) |
| | | |
| | |------------------------------------- until train all stacked AE ------------------------------------------+
| | |
| | |---init_parameters(architecture_BP, last_active_is_softmax, varargin)
| | |---train_BPNN(input, output, theta_BP, architecture_BP, option_BP)
| | | |---fun = @(x) calcBPBatch(input, output, x, architecture, option_BP)
| | | |---minFunc(fun, theta_BP, options)
| |
| |---display_network(W)
| |
| |---predict_NN(input, architecture, theta_SAE, preOption_BPNN)
| |---get_accuracy(predicted_labels, labels)
| |
| |---train_BPNN(input, output, theta_SAE, architecture, preOption_BPNN) // fine-tune
| |
| |---predict_NN(input, architecture, theta_SAE, preOption_BPNN)
| |---get_accuracy(predicted_labels, labels)
|
|
end
[784 400 200 10] + ReLu + sparse(rho = 0.1, beta = 0.3) + de-noising( mode = 'On_Off', rate = 0.15 ): 98+%, 1900s ;
by 郑煜伟 Ewing 2016-04