-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathevaluate.py
66 lines (52 loc) · 1.73 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import math
def get_topk_results(predictions, scores, targets, k, all_items=None):
results = []
B = len(targets)
predictions = [_.split("Response:")[-1] for _ in predictions]
predictions = [_.strip().replace(" ","") for _ in predictions]
if all_items is not None:
for i, seq in enumerate(predictions):
if seq not in all_items:
scores[i] = -1000
for b in range(B):
batch_seqs = predictions[b * k: (b + 1) * k]
batch_scores = scores[b * k: (b + 1) * k]
pairs = [(a, b) for a, b in zip(batch_seqs, batch_scores)]
sorted_pairs = sorted(pairs, key=lambda x: x[1], reverse=True)
target_item = targets[b]
one_results = []
for sorted_pred in sorted_pairs:
if sorted_pred[0] == target_item:
one_results.append(1)
else:
one_results.append(0)
results.append(one_results)
return results
def get_metrics_results(topk_results, metrics):
res = {}
for m in metrics:
if m.lower().startswith("hit"):
k = int(m.split("@")[1])
res[m] = hit_k(topk_results, k)
elif m.lower().startswith("ndcg"):
k = int(m.split("@")[1])
res[m] = ndcg_k(topk_results, k)
else:
raise NotImplementedError
return res
def ndcg_k(topk_results, k):
ndcg = 0.0
for row in topk_results:
res = row[:k]
one_ndcg = 0.0
for i in range(len(res)):
one_ndcg += res[i] / math.log(i + 2, 2)
ndcg += one_ndcg
return ndcg
def hit_k(topk_results, k):
hit = 0.0
for row in topk_results:
res = row[:k]
if sum(res) > 0:
hit += 1
return hit