-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathutils.py
193 lines (144 loc) · 8.36 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import json
import logging
import os
import random
import datetime
import numpy as np
import torch
from torch.utils.data import ConcatDataset
from data import SeqRecDataset, ItemFeatDataset, ItemSearchDataset, FusionSeqRecDataset, SeqRecTestDataset, PreferenceObtainDataset
def parse_global_args(parser):
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--base_model", type=str,
default="./llama-7b/",
help="basic model path")
parser.add_argument("--output_dir", type=str,
default="./ckpt/",
help="The output directory")
return parser
def parse_dataset_args(parser):
parser.add_argument("--data_path", type=str, default="",
help="data directory")
parser.add_argument("--tasks", type=str, default="seqrec,item2index,index2item,fusionseqrec,itemsearch,preferenceobtain",
help="Downstream tasks, separate by comma")
parser.add_argument("--dataset", type=str, default="Games", help="Dataset name")
parser.add_argument("--index_file", type=str, default=".index.json", help="the item indices file")
# arguments related to sequential task
parser.add_argument("--max_his_len", type=int, default=20,
help="the max number of items in history sequence, -1 means no limit")
parser.add_argument("--add_prefix", action="store_true", default=False,
help="whether add sequential prefix in history")
parser.add_argument("--his_sep", type=str, default=", ", help="The separator used for history")
parser.add_argument("--only_train_response", action="store_true", default=False,
help="whether only train on responses")
parser.add_argument("--train_prompt_sample_num", type=str, default="1,1,1,1,1,1",
help="the number of sampling prompts for each task")
parser.add_argument("--train_data_sample_num", type=str, default="0,0,0,100000,0,0",
help="the number of sampling prompts for each task")
parser.add_argument("--valid_prompt_id", type=int, default=0,
help="The prompt used for validation")
parser.add_argument("--sample_valid", action="store_true", default=True,
help="use sampled prompt for validation")
parser.add_argument("--valid_prompt_sample_num", type=int, default=2,
help="the number of sampling validation sequential recommendation prompts")
return parser
def parse_train_args(parser):
parser.add_argument("--optim", type=str, default="adamw_torch", help='The name of the optimizer')
parser.add_argument("--epochs", type=int, default=4)
parser.add_argument("--learning_rate", type=float, default=2e-5)
parser.add_argument("--per_device_batch_size", type=int, default=8)
parser.add_argument("--gradient_accumulation_steps", type=int, default=2)
parser.add_argument("--logging_step", type=int, default=10)
parser.add_argument("--model_max_length", type=int, default=2048)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--lora_r", type=int, default=8)
parser.add_argument("--lora_alpha", type=int, default=32)
parser.add_argument("--lora_dropout", type=float, default=0.05)
parser.add_argument("--lora_target_modules", type=str,
default="q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj", help="separate by comma")
parser.add_argument("--lora_modules_to_save", type=str,
default="embed_tokens,lm_head", help="separate by comma")
parser.add_argument("--resume_from_checkpoint", type=str, default=None, help="either training checkpoint or final adapter")
parser.add_argument("--warmup_ratio", type=float, default=0.01)
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
parser.add_argument("--save_and_eval_strategy", type=str, default="epoch")
parser.add_argument("--save_and_eval_steps", type=int, default=1000)
parser.add_argument("--fp16", action="store_true", default=False)
parser.add_argument("--bf16", action="store_true", default=False)
parser.add_argument("--deepspeed", type=str, default="./config/ds_z3_bf16.json")
return parser
def parse_test_args(parser):
parser.add_argument("--ckpt_path", type=str,
default="",
help="The checkpoint path")
parser.add_argument("--lora", action="store_true", default=False)
parser.add_argument("--filter_items", action="store_true", default=False,
help="whether filter illegal items")
parser.add_argument("--results_file", type=str,
default="./results/test-ddp.json",
help="result output path")
parser.add_argument("--test_batch_size", type=int, default=1)
parser.add_argument("--num_beams", type=int, default=20)
parser.add_argument("--sample_num", type=int, default=-1,
help="test sample number, -1 represents using all test data")
parser.add_argument("--gpu_id", type=int, default=0,
help="GPU ID when testing with single GPU")
parser.add_argument("--test_prompt_ids", type=str, default="0",
help="test prompt ids, separate by comma. 'all' represents using all")
parser.add_argument("--metrics", type=str, default="hit@1,hit@5,hit@10,ndcg@5,ndcg@10",
help="test metrics, separate by comma")
parser.add_argument("--test_task", type=str, default="SeqRec")
return parser
def get_local_time():
cur = datetime.datetime.now()
cur = cur.strftime("%b-%d-%Y_%H-%M-%S")
return cur
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = False
def ensure_dir(dir_path):
os.makedirs(dir_path, exist_ok=True)
def load_datasets(args):
tasks = args.tasks.split(",")
train_prompt_sample_num = [int(_) for _ in args.train_prompt_sample_num.split(",")]
assert len(tasks) == len(train_prompt_sample_num), "prompt sample number does not match task number"
train_data_sample_num = [int(_) for _ in args.train_data_sample_num.split(",")]
assert len(tasks) == len(train_data_sample_num), "data sample number does not match task number"
train_datasets = []
for task, prompt_sample_num,data_sample_num in zip(tasks,train_prompt_sample_num,train_data_sample_num):
if task.lower() == "seqrec":
dataset = SeqRecDataset(args, mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "item2index" or task.lower() == "index2item":
dataset = ItemFeatDataset(args, task=task.lower(), prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "fusionseqrec":
dataset = FusionSeqRecDataset(args, mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "itemsearch":
dataset = ItemSearchDataset(args, mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "preferenceobtain":
dataset = PreferenceObtainDataset(args, prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
else:
raise NotImplementedError
train_datasets.append(dataset)
train_data = ConcatDataset(train_datasets)
valid_data = SeqRecDataset(args,"valid",args.valid_prompt_sample_num)
return train_data, valid_data
def load_test_dataset(args):
if args.test_task.lower() == "seqrec":
test_data = SeqRecDataset(args, mode="test", sample_num=args.sample_num)
# test_data = SeqRecTestDataset(args, sample_num=args.sample_num)
elif args.test_task.lower() == "itemsearch":
test_data = ItemSearchDataset(args, mode="test", sample_num=args.sample_num)
elif args.test_task.lower() == "fusionseqrec":
test_data = FusionSeqRecDataset(args, mode="test", sample_num=args.sample_num)
else:
raise NotImplementedError
return test_data
def load_json(file):
with open(file, 'r') as f:
data = json.load(f)
return data