-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathSFEngine.py
90 lines (74 loc) · 2.99 KB
/
SFEngine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from scipy.io import wavfile
from scipy.fftpack import fft
from sys import argv
from collections import Counter
import glob
import pickle
class SFEngine():
"""SongFinder Engine"""
def __init__(self):
self.freq_dict = {}
def index(self, folder):
for song in glob.glob(folder + "/*.wav"):
try:
self.sample(song, 0, 0, self.store_feature)
except:
print "Error in processing: " + song
def search(self, target):
target_tuple = []
if not target.endswith(".wav"):
print "Only wav file is supported"
def callback(filename, start, feature):
for freq in feature:
if freq not in self.freq_dict:
continue
for (origianl_filename, origianl_time) in self.freq_dict[freq]:
target_tuple.append((origianl_filename, (origianl_time - int(start)) / 44100))
self.sample(target, 0, 0, callback)
counter = Counter(target_tuple)
for pair, count in counter.most_common(5):
print pair[0].split(".")[0], pair[1]#, count
def save(self, filename):
with open(filename, 'wb') as handle:
pickle.dump(self.freq_dict, handle)
def load(self, filename):
with open(filename, 'rb') as handle:
self.freq_dict = pickle.load(handle)
def extract_feature(self, scaled, start, interval):
end = start + interval
dst = fft(scaled[start: end])
length = len(dst)/2
normalized = abs(dst[:(length-1)])
feature = [ normalized[:50].argmax(), \
50 + normalized[50:100].argmax(), \
100 + normalized[100:200].argmax(), \
200 + normalized[200:300].argmax(), \
300 + normalized[300:400].argmax(), \
400 + normalized[400:].argmax()]
return feature
def read_and_scale(self, filename):
rate, data = wavfile.read(filename) # load the data
bits = data.dtype.itemsize * 8
if data.ndim == 2:
data = data.T[0] # this is a two channel soundtrack, I get the first track
scaled = data / (2. ** (bits - 1))
return scaled
def store_feature(self, filename, start, feature):
for freq in feature:
if freq not in self.freq_dict:
self.freq_dict[freq] = []
self.freq_dict[freq].append((filename, start))
def sample(self, filename, start_second, duration = 5, callback = None):
start = start_second * 44100
if duration == 0:
end = 1e15
else:
end = start + 44100 * duration
interval = 8192
scaled = self.read_and_scale(filename)
length = scaled.size
while start < min(length, end):
feature = self.extract_feature(scaled, start, interval)
if callback != None:
callback(filename, start, feature)
start += interval