-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathengine.py
350 lines (287 loc) · 15.5 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
"""
Train and eval functions used in main.py
"""
import math
import sys
from typing import Iterable, Optional
from numpy.lib.nanfunctions import _remove_nan_1d
import torch
from torch.nn.parameter import Parameter
# from torch.utils.tensorboard import SummaryWriter
from timm.data import Mixup
from timm.utils import accuracy, ModelEma
from losses import DistillationLoss
import utils
from quantization.lsq_layer import QuantAct, QuantConv2d, QuantLinear, QuantMultiHeadAct, QuantMuitiHeadLinear, QuantMuitiHeadLinear_in
def train_one_epoch(model: torch.nn.Module, criterion: DistillationLoss,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None,
set_training_mode=True, **kwargs):
model.train(set_training_mode)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
outputs = model(samples)
loss = criterion(samples, outputs, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
torch.cuda.synchronize()
if model_ema is not None:
model_ema.update(model)
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
for images, target in metric_logger.log_every(data_loader, 10, header):
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
bitops = None
output = model(images)
if len(output) == 2:
output, bitops = output[0], output[1]
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
if bitops is not None:
metric_logger.meters['bitops(G)'].update(bitops.item()/1e9, n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def train_one_epoch_tb(model: torch.nn.Module, criterion: DistillationLoss,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None,
set_training_mode=True, bitops_scaler = 0., budget = 0., output_dir='test', writer=None, total_epochs=1):
model.train(set_training_mode)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
interval = total_epochs // 3 * 100 # if greater than max_iter, clipped to be max_iter.
n_iters = 0
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
# with torch.cuda.amp.autocast():
bitops = None
outputs = model(samples)
if len(outputs) == 2:
outputs, bitops = outputs[0], outputs[1]
# loss = criterion(samples, outputs, targets) + bitops_scaler * (bitops - 21.455 * 1e9) ** 2
# loss = criterion(samples, outputs, targets) + bitops_scaler * bitops
if bitops is not None:
loss = criterion(samples, outputs, targets) + bitops_scaler * (torch.clamp(bitops / 1e9 - budget, min=0)) ** 2
else:
loss = criterion(samples, outputs, targets)
loss_value = loss.item()
# acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
# batch_size = samples.shape[0]
#tensor board record
if utils.is_main_process() and writer is not None and n_iters == 0:
global_iters = epoch
# global_iters = len(data_loader) * epoch + n_iters
log_tensorboard(model, writer, global_iters, loss_value)
n_iters += 1
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad(set_to_none=True)
# this attribute is added by timm on one optimizer (adahessian)
# is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
# loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=is_second_order)
loss.backward()
if max_norm is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
torch.cuda.synchronize()
if model_ema is not None:
model_ema.update(model)
metric_logger.update(loss=loss_value)
# metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
# metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if utils.is_main_process() and n_iters % 100 == 0:
log_quantization_parameters(model, output_dir)
if utils.is_main_process():
log_quantization_parameters(model, output_dir)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def initialize_quantization(data_loader, model, device, output_dir, sample_iters=5):
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Initialization:'
if utils.is_main_process():
with (output_dir / "scales.txt").open("w") as f:
f.write("weight scales:\n")
for name, m in model.named_modules():
if (isinstance(m, QuantLinear) or isinstance(m, QuantConv2d) or isinstance(m, QuantMuitiHeadLinear) or isinstance(m, QuantMuitiHeadLinear_in)) and m.alpha is not None:
print(f"initialize the weight scale for module {name}")
m.initialize_scale(device)
f.write(name + ': ' + str(m.alpha.data) + '\n')
# switch to evaluation mode
model.eval()
f.write("activation scales:\n")
n = 0
for images, target in metric_logger.log_every(data_loader, 1, header):
n += 1
if n > sample_iters:
break
images = images.to(device, non_blocking=True)
# compute output
# with torch.cuda.amp.autocast():
output = model(images)
for name, m in model.named_modules():
if (isinstance(m, QuantAct) or isinstance(m, QuantMultiHeadAct)) and m.alpha is not None:
print(f"initialize the activation scale for module {name}")
m.initialize_scale_offset(device)
f.write(name + ': ' + str(m.alpha.data) + '\n')
if m.offset:
f.write("offset" + ': ' + str(m.beta.data) + '\n')
# gather the stats from all processes
metric_logger.synchronize_between_processes()
return
def initialize_muitihead_quantization(model, device):
for name, m in model.named_modules():
if (isinstance(m, QuantMuitiHeadLinear) or isinstance(m, QuantMuitiHeadLinear_in) or isinstance(m, QuantMultiHeadAct)) and m.alpha is not None:
m.nbits = Parameter(torch.ones(m.num_head).to(device) * m.nbits).to(device)
print(f"Initialize bit-width for {name}, bit:{m.nbits.data}")
@torch.no_grad()
def update_bn(data_loader, model, device):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Update BN:'
# switch to evaluation mode
model.train()
for images, _ in metric_logger.log_every(data_loader, 10, header):
images = images.to(device, non_blocking=True)
# compute output
output = model(images)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def log_quantization_parameters(model, output_dir):
with (output_dir / "q_param.txt").open("w") as f:
f.write("weight scales:\n")
for name, m in model.named_modules():
if isinstance(m, QuantLinear) or isinstance(m, QuantConv2d) or isinstance(m, QuantMultiHeadAct) or isinstance(m, QuantAct) or isinstance(m, QuantMuitiHeadLinear) or isinstance(m, QuantMuitiHeadLinear_in):
if m.alpha is not None:
f.write(name + '\n')
f.write('--bitwidth: ' + str(m.nbits.data) + '\n')
if m.nbits.grad is not None:
f.write('--grad: ' + str(m.nbits.grad.data) + '\n')
n = m.nbits.round().to(torch.long)
f.write('--scales: ' + str(m.alpha.data) + '\n')
f.write('--scale_n: ' + str(m.alpha[n-2]) + '\n')
if m.alpha.grad is not None:
f.write('--grad: ' + str(m.alpha.grad.data) + '\n')
if isinstance(m, QuantAct) and m.offset:
f.write("--offsets: " + str(m.beta.data) + '\n')
f.write("--offset_n: " + str(m.beta[n-2]) + '\n')
@torch.no_grad()
def log_tensorboard(model, writer, global_iters, loss_value):
# writer.add_scalar('acc1', acc1, global_iters)
# writer.add_scalar('acc5', acc5, global_iters)
writer.add_scalar('loss', loss_value, global_iters)
for name, m in model.named_modules():
# QuantLinear and QuantConv2d
if (isinstance(m, QuantLinear) or isinstance(m, QuantConv2d)) and m.alpha is not None:
nbits = m.nbits.item()
n = round(nbits)
writer.add_scalar(name+'/bitwidth_float', nbits, global_iters)
writer.add_scalar(name+'/bitwidth', n, global_iters)
writer.add_scalar(name+'/scale', m.alpha[n-2].item(), global_iters)
writer.add_scalar(name+'/weight', m.weight.norm().item(), global_iters)
if m.alpha.grad is not None:
if m.nbits.grad is not None:
writer.add_scalar(name+'/bitwidth_float_grad', m.nbits.grad.item(), global_iters)
writer.add_scalar(name+'/scale_grad', m.alpha.grad[n-2].item(), global_iters)
r1 = m.alpha.grad[n-2].abs().item() / m.alpha[n-2].item()
writer.add_scalar(name+'/r_scale', r1, global_iters)
writer.add_scalar(name+'/weight_grad', m.weight.grad.norm().item(), global_iters)
r2 = m.weight.grad.norm().item() / m.weight.norm().item()
writer.add_scalar(name+'/r_weight', r2, global_iters)
# writer.add_scalar(name+'/R', r1 / r2, global_iters)
writer.add_scalar(name+'/weight_numel', m.weight.numel(), global_iters)
writer.add_scalar(name+'/weight_mean', m.weight.mean(), global_iters)
# QuantAct
elif isinstance(m, QuantAct) and m.alpha is not None:
nbits = m.nbits.item()
n = round(nbits)
writer.add_scalar(name+'/bitwidth_float', nbits, global_iters)
writer.add_scalar(name+'/bitwidth', n, global_iters)
writer.add_scalar(name+'/scale', m.alpha[n-2].item(), global_iters)
if m.alpha.grad is not None:
if m.nbits.grad is not None:
writer.add_scalar(name+'/bitwidth_float_grad', m.nbits.grad.item(), global_iters)
writer.add_scalar(name+'/scale_grad', m.alpha.grad[n-2].item(), global_iters)
r1 = m.alpha.grad[n-2].abs().item() / m.alpha[n-2].item()
writer.add_scalar(name+'/r_scale', r1, global_iters)
if hasattr(m, 'beta') and m.offset:
writer.add_scalar(name+'/offset', m.beta[n-2].item(), global_iters)
if m.beta.grad is not None:
writer.add_scalar(name+'/offset_grad', m.beta.grad[n-2].item(), global_iters)
r3 = m.beta.grad[n-2].abs().item() / m.beta[n-2].abs().item()
writer.add_scalar(name+'/r_offset', r3, global_iters)
elif isinstance(m, QuantMultiHeadAct) and m.alpha is not None:
num_head = m.num_head
bits_float = {}
bits_int = {}
scales = {}
scales_grad = {}
for i in range(num_head):
bit_float = m.nbits[i]
bit_int = bit_float.round().to(torch.long)
bits_float['h'+str(i)] = bit_float
bits_int['h'+str(i)] = bit_int
scales['h'+str(i)] = m.alpha[bit_int-2]
if m.alpha.grad is not None:
scales_grad['h'+str(i)] = m.alpha.grad[bit_int-2]
writer.add_scalars(name+'/bitwidth_float', bits_float, global_iters)
writer.add_scalars(name+'/bitwidth', bits_int, global_iters)
writer.add_scalars(name+'/scale', scales, global_iters)
if m.alpha.grad is not None:
writer.add_scalars(name+'/scale_grad', scales_grad, global_iters)
@torch.no_grad()
def head_analysis(model, head_index):
for name, m in model.named_modules():
if 'blocks.0.attn' in name and (isinstance(m, QuantMuitiHeadLinear) or isinstance(m, QuantMuitiHeadLinear_in) or isinstance(m, QuantMultiHeadAct)) and m.alpha is not None:
m.nbits.data.fill_(8.)
m.nbits[head_index].data.fill_(2.)
print(f"turning bit-width for {name} to 2-bit...\nresulting bit:{m.nbits.data}")