Skip to content

Latest commit

 

History

History
122 lines (106 loc) · 4.63 KB

File metadata and controls

122 lines (106 loc) · 4.63 KB

Note: This sample works with OpenSearch Project. We encourage you to join the public Slack for questions.

Process of fine-tuning neural-sparse model on customized dataset

Prepare the environment

Conda environment

conda create -n neural-sparse python=3.9
conda activate neural-sparse
conda install pytorch==1.11.0 cudatoolkit=10.2 -c pytorch
conda install numpy
pip install accelerate==1.0.0 transformers==4.44.1 datasets==3.0.1 opensearch-py beir

OpenSearch service

To evaluate search relevance or mine hard negatives, run an OpenSearch node at local device. It can be accessed at http://localhost:9200 without username/password(security disabled). For more details, please check OpenSearch doc. Here are steps to start a node without security:

  1. Follow the step1 and step2 in above documentation.
  2. Modify /path/to/opensearch-2.16.0/config/opensearch.yml, add this line: plugins.security.disabled: true
  3. Start a tmux session so the OpenSearch won't stop after the terminal is close tmux new -s opensearch. In the tmux session, run cd /path/to/opensearch-2.16.0 and ./bin/opensearch.
  4. The service is running. Run curl -X GET http://localhost:9200 to test.

An example of fine-tuning on BEIR scifact

Here is an example of fine-tuning the opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill model at BEIR scifact.

  1. Generate training data.
    1. python demo_train_data.py(data parallel) or torchrun --nproc_per_node=${N_DEVICES} demo_train_data.py(distributed data parallel) with configs.
    2. This will generate training data of hard negatives at data/scifact_train
torchrun --nproc_per_node=${N_DEVICES} demo_train_data.py \
  --model_name_or_path opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill \
  --inf_free true \
  --idf_path idf.json \
  --beir_dir data/beir \
  --beir_datasets scifact
  1. Run training.
    1. python train_ir.py {config_file}(data parallel) or torchrun --nproc_per_node=${N_DEVICES} train_ir.py config.yaml(distributed data parallel)
    2. If training using infoNCE loss, use config_infonce.yaml
    3. If training using ensemble teacher models, using config_kd.yaml
  2. Run evaluation on the test set.
for step in {500,1000,1500,2000}
do
OUTPUT_DIR="output/test"
torchrun --nproc_per_node=8 evaluate_beir.py \
  --model_name_or_path ${OUTPUT_DIR}/checkpoint-${step} \
  --inf_free true \
  --idf_path idf.json \
  --output_dir ${OUTPUT_DIR} \
  --log_level info \
  --beir_datasets scifact \
  --per_device_eval_batch_size 50
done

Run with infoNCE loss

Training with infoNCE loss. It pushes the model generates higher scores for the positive pairs than all other pairs.

python train_ir.py config_infonce.yaml

Run with distributed data parallel:

# the number of GPU
N_DEVICES=8
torchrun --nproc_per_node=${N_DEVICES} train_ir.py config_infonce.yaml

Data file is a datasets.Dataset, each sample is an object like this:

{
    "query":"xxx xxx xxx",
    "pos":"xxxx xxxx xxxx",
    "negs": ["xxx", "xxx", "xxx", "xxx"],
}

Run with knowledge distillation (ensemble teachers)

To ensemble dense and sparse teachers to generate supervisory signals for knowledge distillation. The supervisory signals are generated dynamically during training.

Run with data parallel:

python train_ir.py config_kd.yaml

Run with distributed data parallel:

# the number of GPU
N_DEVICES=8
torchrun --nproc_per_node=${N_DEVICES} train_ir.py config_kd.yaml

The data file has the same format as training with infoNCE.

Run with knowledge distillation (scores pre-computed)

For expensive teacher models like LLM or cross-encoders, we can calculate the scores in advance and store the scores. To run with pre-computed KD scores, use_in_batch_negatives should be set to false.

Data file is a datasets.Dataset, each sample is an object like this:

{
    "query":"xxx xxx xxx",
    "docs": ["xxx", "xxx", "xxx", "xxx"],
    "scores": [1.0, 5.0, 9.0, 4.4]
}

Related read

Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers

@misc{geng2024competitivesearchrelevanceinferencefree,
      title={Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers}, 
      author={Zhichao Geng and Dongyu Ru and Yang Yang},
      year={2024},
      eprint={2411.04403},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2411.04403}, 
}

COPYRIGHT

Copyright opensearch-sparse-model-tuning-sample Contributors.