forked from bamos/densenet.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
executable file
·67 lines (55 loc) · 2.1 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/usr/bin/env python3
import argparse
import os
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
plt.style.use('bmh')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('expDir', type=str)
args = parser.parse_args()
trainP = os.path.join(args.expDir, 'train.csv')
trainData = np.loadtxt(trainP, delimiter=',').reshape(-1, 3)
testP = os.path.join(args.expDir, 'test.csv')
testData = np.loadtxt(testP, delimiter=',').reshape(-1, 3)
N = 392*2 # Rolling loss over the past epoch.
trainI, trainLoss, trainErr = np.split(trainData, [1,2], axis=1)
trainI, trainLoss, trainErr = [x.ravel() for x in
(trainI, trainLoss, trainErr)]
trainI_, trainLoss_, trainErr_ = rolling(N, trainI, trainLoss, trainErr)
testI, testLoss, testErr = np.split(testData, [1,2], axis=1)
fig, ax = plt.subplots(1, 1, figsize=(6, 5))
# plt.plot(trainI, trainLoss, label='Train')
plt.plot(trainI_, trainLoss_, label='Train')
plt.plot(testI, testLoss, label='Test')
plt.xlabel('Epoch')
plt.ylabel('Cross-Entropy Loss')
plt.legend()
ax.set_yscale('log')
loss_fname = os.path.join(args.expDir, 'loss.png')
plt.savefig(loss_fname)
print('Created {}'.format(loss_fname))
fig, ax = plt.subplots(1, 1, figsize=(6, 5))
# plt.plot(trainI, trainErr, label='Train')
plt.plot(trainI_, trainErr_, label='Train')
plt.plot(testI, testErr, label='Test')
plt.xlabel('Epoch')
plt.ylabel('Error')
ax.set_yscale('log')
plt.legend()
err_fname = os.path.join(args.expDir, 'error.png')
plt.savefig(err_fname)
print('Created {}'.format(err_fname))
loss_err_fname = os.path.join(args.expDir, 'loss-error.png')
os.system('convert +append {} {} {}'.format(loss_fname, err_fname, loss_err_fname))
print('Created {}'.format(loss_err_fname))
def rolling(N, i, loss, err):
i_ = i[N-1:]
K = np.full(N, 1./N)
loss_ = np.convolve(loss, K, 'valid')
err_ = np.convolve(err, K, 'valid')
return i_, loss_, err_
if __name__ == '__main__':
main()