-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcontinual_exp.py
528 lines (416 loc) · 21.3 KB
/
continual_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# coding=utf-8
from __future__ import print_function
import argparse
from itertools import chain
import six.moves.cPickle as pickle
from six.moves import xrange as range
from six.moves import input
import traceback
import numpy as np
import time
import os
import sys
import collections
import torch
from torch.autograd import Variable
from model.utils import GloveHelper, merge_vocab_entry
from common.registerable import Registrable
from components.dataset import Dataset, Example, ContinualDataset
from common.utils import update_args, init_arg_parser
from datasets import *
from model import nn_utils
import evaluation
from components.grammar_validation.asdl import LambdaCalculusTransitionSystem
from components.evaluator import DefaultEvaluator, ActionEvaluator
from continual_model.seq2seq_topdown import Seq2SeqModel
# from model.seq2seq_align import Seq2SeqModel
def init_config():
args = arg_parser.parse_args()
# seed the RNG
torch.manual_seed(args.seed)
if args.use_cuda:
torch.cuda.manual_seed(args.seed)
np.random.seed(int(args.seed * 13 / 7))
return args
def continual_train(args):
known_domains = args.known_domains
new_domains = args.new_domains
model_path = args.load_model
last_domain = 'sample'
for domain in new_domains:
train_a_task(args, known_domains, [domain], model_path)
known_domains.append(domain)
model_path = str(args.load_model).replace(last_domain, domain)
last_domain = domain
def train_iter_process(optimizer, batch_examples, report_loss, report_examples, model):
optimizer.zero_grad()
ret_val = model(batch_examples)
loss = ret_val[0]
loss_val = torch.sum(loss).data.item()
loss = torch.mean(loss)
report_loss += loss_val
report_examples += len(batch_examples)
loss.backward()
# clip gradient
if args.clip_grad > 0.:
if args.clip_grad_mode == 'norm':
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad)
elif args.clip_grad_mode == 'value':
grad_norm = torch.nn.utils.clip_grad_value_(model.parameters(), args.clip_grad)
optimizer.step()
return report_loss, report_examples
def train_a_task(args, known_domains, new_domain, model_path):
"""Maximum Likelihood Estimation"""
previous_train_path_list = read_domain_data(known_domains, args.train_file, "_train.bin")
known_train_set = dict()
if args.sample == 'task_level':
idx = 0
for path in previous_train_path_list:
domain = known_domains[idx]
task_set = ContinualDataset.from_bin_file(path)
known_train_set[domain] = task_set
idx += 1
elif args.sample == 'sample_level':
known_train_set['sample'] = ContinualDataset.from_bin_file_list(previous_train_path_list)
print("training started ...")
train_path_list = read_domain_data(new_domain, args.train_file, "_train.bin")
train_set = ContinualDataset.from_bin_file_list(train_path_list)
if args.dev_file:
dev_path_list = read_domain_data(new_domain, args.dev_file, "_test.bin")
dev_set = ContinualDataset.from_bin_file_list(dev_path_list)
else:
dev_set = ContinualDataset(examples=[])
vocab = read_domain_vocab(known_domains + new_domain, args.vocab, ".vocab.freq.bin")
print("register parser ...")
parser_cls = Registrable.by_name(args.parser) # TODO: add arg
print('load model from [%s]' % args.load_model, file=sys.stderr)
model, src_vocab = parser_cls.load(model_path=model_path, use_cuda=args.use_cuda, loaded_vocab=vocab, args=args)
print("load pre-trained word embedding (optional)")
if args.glove_embed_path and (src_vocab is not None):
# print (args.embed_size)
print('load glove embedding from: %s' % args.glove_embed_path, file=sys.stderr)
glove_embedding = GloveHelper(args.glove_embed_path, args.embed_size)
glove_embedding.load_pre_train_to(model.src_embed, src_vocab)
print("setting model to training mode")
model.train()
evaluator = Registrable.by_name(args.evaluator)(args=args, vocab=vocab)
if args.use_cuda and torch.cuda.is_available():
model.cuda()
optimizer_cls = eval('torch.optim.%s' % args.optimizer) # FIXME: this is evil!
if args.optimizer == 'RMSprop':
optimizer = optimizer_cls(model.parameters(), lr=args.lr, alpha=args.alpha)
else:
optimizer = optimizer_cls(model.parameters(), lr=args.lr)
if args.uniform_init:
print('uniformly initialize parameters [-%f, +%f]' % (args.uniform_init, args.uniform_init), file=sys.stderr)
nn_utils.uniform_init(-args.uniform_init, args.uniform_init, model.parameters())
elif args.glorot_init:
print('use glorot initialization', file=sys.stderr)
nn_utils.glorot_init(model.parameters())
print("load pre-trained word embedding (optional)")
if args.glove_embed_path:
print('load glove embedding from: %s' % args.glove_embed_path, file=sys.stderr)
glove_embedding = GloveHelper(args.glove_embed_path, args.embed_size)
glove_embedding.load_to(model.src_embed, vocab.source)
print('begin training, %d training examples, %d dev examples' % (len(train_set), len(dev_set)), file=sys.stderr)
print('vocab: %s' % repr(vocab), file=sys.stderr)
epoch = train_iter = 0
report_loss = report_examples = replay_report_loss = replay_report_examples = 0.
history_dev_scores = []
num_trial = patience = 0
while True:
epoch += 1
epoch_begin = time.time()
for batch_examples in train_set.batch_iter(batch_size=args.batch_size, shuffle=True):
train_iter += 1
# normal train
report_loss, report_examples = train_iter_process(optimizer, batch_examples, report_loss, report_examples,
model)
if args.sample == 'sample_level':
if args.sample_mode == 'random':
replay_batch_examples = known_train_set['sample'].random_sample_batch_iter(args.batch_size)
elif args.sample_mode == 'template':
replay_batch_examples = known_train_set['sample'].template_sample_batch_iter(args.batch_size, batch_examples)
else:
raise ValueError
replay_report_loss, replay_report_examples = train_iter_process(optimizer, replay_batch_examples,
replay_report_loss,
replay_report_examples, model)
elif args.sample == 'task_level':
for domain, domain_set in known_train_set.items():
sample_size = int(args.batch_size / len(known_train_set))
if args.sample_mode == 'random':
replay_task_examples = domain_set.random_sample_batch_iter(sample_size)
elif args.sample_mode == 'template':
replay_task_examples = domain_set.template_sample_batch_iter(sample_size, batch_examples)
else:
raise ValueError
replay_report_loss, replay_report_examples = train_iter_process(optimizer, replay_task_examples,
replay_report_loss,
replay_report_examples, model)
# replay train
# replay_report_loss, replay_report_examples = train_iter_process(optimizer, replay_batch_examples, replay_report_loss, replay_report_examples, model)
if train_iter % args.log_every == 0:
log_str = '[Iter %d] encoder loss=%.5f' % (train_iter, report_loss / report_examples)
if not args.sample == 'normal_level':
log_str += '[Iter %d] replay encoder loss=%.5f' % (
train_iter, replay_report_loss / replay_report_examples)
print(log_str, file=sys.stderr)
report_loss = report_examples = replay_report_loss = replay_report_examples = 0.
print('[Epoch %d] epoch elapsed %ds' % (epoch, time.time() - epoch_begin), file=sys.stderr)
if args.save_all_models:
model_file = args.save_to + '.%s.iter%d.bin' % (new_domain[0], train_iter)
print('save model to [%s]' % model_file, file=sys.stderr)
model.save(model_file)
# perform validation
if args.dev_file:
if epoch % args.valid_every_epoch == 0:
print('[Epoch %d] begin validation' % epoch, file=sys.stderr)
eval_start = time.time()
eval_results = evaluation.evaluate(dev_set.examples, model, evaluator, args,
verbose=True, eval_top_pred_only=args.eval_top_pred_only)
dev_score = eval_results[evaluator.default_metric]
print('[Epoch %d] evaluate details: %s, dev %s: %.5f (took %ds)' % (
epoch, eval_results,
evaluator.default_metric,
dev_score,
time.time() - eval_start), file=sys.stderr)
is_better = history_dev_scores == [] or dev_score > max(history_dev_scores)
history_dev_scores.append(dev_score)
else:
is_better = True
if args.decay_lr_every_epoch and epoch > args.lr_decay_after_epoch:
lr = optimizer.param_groups[0]['lr'] * args.lr_decay
print('decay learning rate to %f' % lr, file=sys.stderr)
# set new lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if is_better:
patience = 0
model_file = args.save_to + '.%s.bin' % new_domain[0]
print('save the current model ..', file=sys.stderr)
print('save model to [%s]' % model_file, file=sys.stderr)
model.save(model_file)
# also save the optimizers' state
torch.save(optimizer.state_dict(), args.save_to + '.%s.optim.bin' % new_domain[0])
elif patience < args.patience and epoch >= args.lr_decay_after_epoch:
patience += 1
print('hit patience %d' % patience, file=sys.stderr)
if epoch == args.max_epoch:
print('reached max epoch, stop!', file=sys.stderr)
break
if patience >= args.patience and epoch >= args.lr_decay_after_epoch:
num_trial += 1
print('hit #%d trial' % num_trial, file=sys.stderr)
if num_trial == args.max_num_trial:
print('early stop!', file=sys.stderr)
break
# decay lr, and restore from previously best checkpoint
lr = optimizer.param_groups[0]['lr'] * args.lr_decay
print('load previously best model and decay learning rate to %f' % lr, file=sys.stderr)
# load model
params = torch.load(args.save_to + '.%s.bin' % new_domain[0], map_location=lambda storage, loc: storage)
model.load_state_dict(params['state_dict'])
if args.use_cuda: model = model.cuda()
# load optimizers
if args.reset_optimizer:
print('reset optimizer', file=sys.stderr)
reset_optimizer_cls = eval('torch.optim.%s' % args.optimizer) # FIXME: this is evil!
if args.optimizer == 'RMSprop':
optimizer = reset_optimizer_cls(model.parameters(), lr=args.lr, alpha=args.alpha)
else:
optimizer = reset_optimizer_cls(model.parameters(), lr=args.lr)
# optimizer = torch.optim.Adam(model.parameters(), lr=lr)
else:
print('restore parameters of the optimizers', file=sys.stderr)
optimizer.load_state_dict(torch.load(args.save_to + '.%s.optim.bin' % new_domain[0]))
# set new lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# reset patience
patience = 0
def read_domain_data(domains, file_prefix, suffix):
path_list = []
for domain in domains:
path = os.path.join(file_prefix, domain + suffix)
path_list.append(path)
return path_list
def read_domain_vocab(domains, file_prefix, suffix):
assert len(domains) > 0
vocab = pickle.load(open(os.path.join(file_prefix, domains[0] + suffix), 'rb'))
for domain in domains[1:]:
vocab_after = pickle.load(open(os.path.join(file_prefix, domain + suffix), 'rb'))
vocab = merge_vocab_entry(vocab_after, vocab)
return vocab
def train(args):
"""Maximum Likelihood Estimation"""
# load in train/dev set
new_domains = args.new_domains
print("training started ...")
train_path_list = read_domain_data(new_domains, args.train_file, "_train.bin")
train_set = ContinualDataset.from_bin_file_list(train_path_list)
if args.dev_file:
dev_path_list = read_domain_data(new_domains, args.dev_file, "_test.bin")
dev_set = ContinualDataset.from_bin_file_list(dev_path_list)
else:
dev_set = ContinualDataset(examples=[])
vocab = read_domain_vocab(new_domains, args.vocab, ".vocab.freq.bin")
print("register parser ...")
parser_cls = Registrable.by_name(args.parser) # TODO: add arg
model = parser_cls(vocab, args)
print("setting model to training mode")
model.train()
evaluator = Registrable.by_name(args.evaluator)(args=args, vocab=vocab)
if args.use_cuda and torch.cuda.is_available():
model.cuda()
optimizer_cls = eval('torch.optim.%s' % args.optimizer) # FIXME: this is evil!
if args.optimizer == 'RMSprop':
optimizer = optimizer_cls(model.parameters(), lr=args.lr, alpha=args.alpha)
else:
optimizer = optimizer_cls(model.parameters(), lr=args.lr)
if args.uniform_init:
print('uniformly initialize parameters [-%f, +%f]' % (args.uniform_init, args.uniform_init), file=sys.stderr)
nn_utils.uniform_init(-args.uniform_init, args.uniform_init, model.parameters())
elif args.glorot_init:
print('use glorot initialization', file=sys.stderr)
nn_utils.glorot_init(model.parameters())
print("load pre-trained word embedding (optional)")
if args.glove_embed_path:
print('load glove embedding from: %s' % args.glove_embed_path, file=sys.stderr)
glove_embedding = GloveHelper(args.glove_embed_path, args.embed_size)
glove_embedding.load_to(model.src_embed, vocab.source)
print('begin training, %d training examples, %d dev examples' % (len(train_set), len(dev_set)), file=sys.stderr)
print('vocab: %s' % repr(vocab), file=sys.stderr)
epoch = train_iter = 0
report_loss = report_examples = 0.
history_dev_scores = []
num_trial = patience = 0
while True:
epoch += 1
epoch_begin = time.time()
for batch_examples in train_set.batch_iter(batch_size=args.batch_size, shuffle=True):
train_iter += 1
optimizer.zero_grad()
ret_val = model(batch_examples)
loss = ret_val[0]
loss_val = torch.sum(loss).data.item()
# print(loss.size())
loss = torch.mean(loss)
report_loss += loss_val
report_examples += len(batch_examples)
loss.backward()
# clip gradient
if args.clip_grad > 0.:
if args.clip_grad_mode == 'norm':
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad)
elif args.clip_grad_mode == 'value':
grad_norm = torch.nn.utils.clip_grad_value_(model.parameters(), args.clip_grad)
optimizer.step()
if train_iter % args.log_every == 0:
log_str = '[Iter %d] encoder loss=%.5f' % (train_iter, report_loss / report_examples)
print(log_str, file=sys.stderr)
report_loss = report_examples = 0.
print('[Epoch %d] epoch elapsed %ds' % (epoch, time.time() - epoch_begin), file=sys.stderr)
if args.save_all_models:
model_file = args.save_to + '.sample.iter%d.bin' % train_iter
print('save model to [%s]' % model_file, file=sys.stderr)
model.save(model_file)
# perform validation
if args.dev_file:
if epoch % args.valid_every_epoch == 0:
print('[Epoch %d] begin validation' % epoch, file=sys.stderr)
eval_start = time.time()
eval_results = evaluation.evaluate(dev_set.examples, model, evaluator, args,
verbose=True, eval_top_pred_only=args.eval_top_pred_only)
dev_score = eval_results[evaluator.default_metric]
print('[Epoch %d] evaluate details: %s, dev %s: %.5f (took %ds)' % (
epoch, eval_results,
evaluator.default_metric,
dev_score,
time.time() - eval_start), file=sys.stderr)
is_better = history_dev_scores == [] or dev_score > max(history_dev_scores)
history_dev_scores.append(dev_score)
else:
is_better = True
if args.decay_lr_every_epoch and epoch > args.lr_decay_after_epoch:
lr = optimizer.param_groups[0]['lr'] * args.lr_decay
print('decay learning rate to %f' % lr, file=sys.stderr)
# set new lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if is_better:
patience = 0
model_file = args.save_to + '.sample.bin'
print('save the current model ..', file=sys.stderr)
print('save model to [%s]' % model_file, file=sys.stderr)
model.save(model_file)
# also save the optimizers' state
torch.save(optimizer.state_dict(), args.save_to + '.sample.optim.bin')
elif patience < args.patience and epoch >= args.lr_decay_after_epoch:
patience += 1
print('hit patience %d' % patience, file=sys.stderr)
if epoch == args.max_epoch:
print('reached max epoch, stop!', file=sys.stderr)
exit(0)
if patience >= args.patience and epoch >= args.lr_decay_after_epoch:
num_trial += 1
print('hit #%d trial' % num_trial, file=sys.stderr)
if num_trial == args.max_num_trial:
print('early stop!', file=sys.stderr)
exit(0)
# decay lr, and restore from previously best checkpoint
lr = optimizer.param_groups[0]['lr'] * args.lr_decay
print('load previously best model and decay learning rate to %f' % lr, file=sys.stderr)
# load model
params = torch.load(args.save_to + '.sample.bin', map_location=lambda storage, loc: storage)
model.load_state_dict(params['state_dict'])
if args.use_cuda: model = model.cuda()
# load optimizers
if args.reset_optimizer:
print('reset optimizer', file=sys.stderr)
reset_optimizer_cls = eval('torch.optim.%s' % args.optimizer) # FIXME: this is evil!
if args.optimizer == 'RMSprop':
optimizer = reset_optimizer_cls(model.parameters(), lr=args.lr, alpha=args.alpha)
else:
optimizer = reset_optimizer_cls(model.parameters(), lr=args.lr)
# optimizer = torch.optim.Adam(model.parameters(), lr=lr)
else:
print('restore parameters of the optimizers', file=sys.stderr)
optimizer.load_state_dict(torch.load(args.save_to + '.sample.optim.bin'))
# set new lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# reset patience
patience = 0
def test(args):
domains = args.new_domains
test_path_list = read_domain_data(domains, args.test_file, "_test.bin")
# print (test_path_list)
test_set = ContinualDataset.from_bin_file_list(test_path_list)
assert args.load_model
print('load model from [%s]' % args.load_model, file=sys.stderr)
params = torch.load(args.load_model, map_location=lambda storage, loc: storage)
saved_args = params['args']
saved_args.use_cuda = args.use_cuda
parser_cls = Registrable.by_name(args.parser)
parser, unit_src_vocab = parser_cls.load(model_path=args.load_model, use_cuda=args.use_cuda)
parser.eval()
vocab = parser.vocab
evaluator = Registrable.by_name(args.evaluator)(args=args, vocab=vocab)
eval_results, decode_results = evaluation.evaluate(test_set.examples, parser, evaluator, args,
verbose=args.verbose, return_decode_result=True)
print(eval_results, file=sys.stderr)
if args.save_decode_to:
pickle.dump(decode_results, open(args.save_decode_to, 'wb'))
if __name__ == '__main__':
arg_parser = init_arg_parser()
args = init_config()
print(args, file=sys.stderr)
if args.mode == 'train':
train(args)
elif args.mode == 'test':
test(args)
elif args.mode == 'continual_train':
continual_train(args)
else:
raise RuntimeError('unknown mode')