-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlife_exp.py
387 lines (316 loc) · 16.5 KB
/
life_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# coding=utf-8
from __future__ import print_function
import argparse
import uuid
import datetime
from itertools import chain
import six.moves.cPickle as pickle
from six.moves import xrange as range
from six.moves import input
import traceback
import numpy as np
import time
import os
import sys
import collections
import torch
from torch.autograd import Variable
from continual_model.utils import confusion_matrix, write_unforget_examples, write_action_prob_diff
from model.utils import GloveHelper, merge_vocab_entry
from common.registerable import Registrable
from components.dataset import ContinuumDataset, Batch
from common.utils import update_args, init_arg_parser
from datasets import *
from model import nn_utils
from components.evaluator import DefaultEvaluator, ActionEvaluator, SmatchEvaluator
from continual_model.gem import Net
from continual_model.icarl import Net
from continual_model.emr import Net
from continual_model.ea_emr import Net
from continual_model.origin import Net
from continual_model.independent import Net
from continual_model.gem_emr import Net
from continual_model.loss_emr import Net
from continual_model.loss_gem import Net
from continual_model.a_gem import Net
from continual_model.gss_emr import Net
from continual_model.emr_wo_task_boundary import Net
from continual_model.adap_emr import Net
from continual_model.emar import Net
from continual_model.hat import Net
from continual_model.ewc import Net
from continual_model.adap_emr_bi import Net
# from model.seq2seq_align import Seq2SeqModel
def init_config():
args = arg_parser.parse_args()
return args
def init_parameter_seed():
# seed the RNG
torch.manual_seed(args.p_seed)
if args.use_cuda:
torch.cuda.manual_seed(args.p_seed)
np.random.seed(int(args.p_seed * 13 / 7))
def read_domain_data(domains, file_prefix, suffix):
path_list = []
for domain in domains:
path = os.path.join(file_prefix, domain + suffix)
path_list.append(path)
return path_list
def read_domain_vocab(domains, file_prefix, suffix):
assert len(domains) > 0
vocab = pickle.load(open(os.path.join(file_prefix, domains[0] + suffix), 'rb'))
for domain in domains[1:]:
vocab_after = pickle.load(open(os.path.join(file_prefix, domain + suffix), 'rb'))
vocab = merge_vocab_entry(vocab_after, vocab)
return vocab
def eval_action_prob(model, tasks, args, current_task):
was_training = model.training
model.eval()
result = []
for i, task in enumerate(tasks):
if i <= current_task:
t_offset1, t_offset2 = model.compute_offsets(i)
nt_offset = model.nt_nc_per_task[i]
action_prob_dict = {}
for example in task.train.examples:
batch = Batch([example], model.vocab, use_cuda=model.use_cuda)
if args.parser == 'adap_emr':
nt_scores, t_scores, gate_vecs = model.forward_with_offset(model.model, t_offset1, t_offset2, nt_offset,
batch, task_id = i)
else:
nt_scores, t_scores = model.forward_with_offset(model.model, t_offset1, t_offset2, nt_offset,
batch)
batch.t_action_idx_matrix[batch.t_action_idx_matrix.nonzero(as_tuple=True)] = batch.t_action_idx_matrix[
batch.t_action_idx_matrix.nonzero(
as_tuple=True)] - t_offset1 + 1
t_action_prob = torch.softmax(t_scores, dim=-1)
# (tgt_action_len, batch_size)
tgt_t_action_prob = torch.gather(t_action_prob, dim=2,
index=batch.t_action_idx_matrix.unsqueeze(2)).squeeze(2)
tgt_t_action_prob = tgt_t_action_prob * batch.t_action_mask
# print (t_action_prob.squeeze().size())
nt_action_prob = torch.softmax(nt_scores, dim=-1)
tgt_nt_action_prob = torch.gather(nt_action_prob, dim=2,
index=batch.nt_action_idx_matrix.unsqueeze(2)).squeeze(2)
tgt_nt_action_prob = tgt_nt_action_prob * batch.nt_action_mask
# print (nt_action_prob.squeeze().size())
action_cat_prob = torch.cat([t_action_prob.squeeze(), nt_action_prob.squeeze()], dim=1)
att_weights = model.model.att_weights
#print (action_cat_prob.size())
#print (len(model.model.t_action_vocab) + len(model.model.nt_action_vocab))
#print(att_weights.size())
max_indx = torch.argmax(action_cat_prob, dim=1)
max_att_indx = torch.argmax(att_weights, dim=1)
#print (max_indx.size())
action_prob = tgt_t_action_prob + tgt_nt_action_prob
for aciton_id, action in enumerate(example.tgt_actions):
action_indice = max_indx[aciton_id].item()
utterance_token_indx = max_att_indx[aciton_id].item()
#print (action_indice)
if action_indice < t_action_prob.squeeze().size(1):
action_indice = action_indice + t_offset1 - 1
pred_action = model.model.t_action_vocab.id2token[action_indice]
else:
action_indice = (action_indice - t_action_prob.squeeze().size(1)) % nt_offset
pred_action = model.model.nt_action_vocab.id2token[action_indice]
if action in action_prob_dict:
action_prob_dict[action]['action_prob'].append(action_prob[aciton_id].item())
action_prob_dict[action]['action_prob_all'].append(action_prob.detach().cpu())
action_prob_dict[action]['pred_action'].append(pred_action)
utterance = " ".join(example.src_sent)
expand_utterance = ["<bos>"] + example.src_sent + ["<eos>"]
action_prob_dict[action]['utterance_att_tokens'].add(expand_utterance[utterance_token_indx])
if not utterance in action_prob_dict[action]:
action_prob_dict[action]['utterance'].append(utterance)
action_prob_dict[action]['utterance_embed'].append(None)
else:
action_prob_dict[action] = {}
action_prob_dict[action]['action_prob'] = []
action_prob_dict[action]['action_prob'].append(action_prob[aciton_id].item())
action_prob_dict[action]['action_prob_all'] = []
action_prob_dict[action]['action_prob_all'].append(action_prob.detach().cpu())
action_prob_dict[action]['pred_action'] = []
action_prob_dict[action]['pred_action'].append(pred_action)
action_prob_dict[action]['utterance'] = []
utterance = " ".join(example.src_sent)
expand_utterance = ["<bos>"] + example.src_sent + ["<eos>"]
action_prob_dict[action]['utterance_att_tokens'] = set()
action_prob_dict[action]['utterance_att_tokens'].add(expand_utterance[utterance_token_indx])
action_prob_dict[action]['utterance'].append(utterance)
action_prob_dict[action]['utterance_embed'] = []
action_prob_dict[action]['utterance_embed'].append(None)
result.append(action_prob_dict)
if was_training: model.train()
return result
def eval_task_forget_examples(model, tasks, args, current_task):
was_training = model.training
model.eval()
result = []
for i, task in enumerate(tasks):
if i <= current_task:
decode_results = model.decode(task.train.examples, i)
eval_results = model.evaluator.evaluate_dataset(task.train.examples, decode_results,
fast_mode=args.eval_top_pred_only)
result.append(eval_results[model.evaluator.correct_array])
if was_training: model.train()
return result
def eval_tasks(model, tasks, args, current_task):
was_training = model.training
model.eval()
result = []
correct_num = 0
total_num = 0
for i, task in enumerate(tasks):
if args.num_known_domains == len(args.domains):
decode_results = model.decode(task.test.examples, 0)
else:
decode_results = model.decode(task.test.examples, i)
if args.evaluator == "denotation_evaluator":
eval_results = model.evaluator.evaluate_dataset(task.test.examples, decode_results,
fast_mode=args.eval_top_pred_only, test_data = task.test)
else:
eval_results = model.evaluator.evaluate_dataset(task.test.examples, decode_results,
fast_mode=args.eval_top_pred_only)
print("[accuracy: " + str(eval_results[model.evaluator.default_metric]) + " , correct_num: " + str(eval_results[model.evaluator.correct_num]) + "]", file=sys.stderr)
test_score = eval_results[model.evaluator.default_metric]
result.append(test_score)
if i <= current_task:
total_num += len(task.test.examples)
correct_num += eval_results[model.evaluator.correct_num]
if total_num == 0:
final_acc = 0
else:
final_acc = correct_num/total_num
result.append(final_acc)
if was_training: model.train()
return result
def life_experience(net, continuum_dataset, args, test_continuum_dataset):
result_a = []
forget_result = []
action_prob = []
time_start = time.time()
for task_indx, task_data in enumerate(continuum_dataset):
last_task_indx = task_indx - 1
result_a.append(eval_tasks(net, continuum_dataset, args, last_task_indx))
net.train()
net.observe(task_data, task_indx)
if args.forget_evaluate:
forget_result.append(eval_task_forget_examples(net, continuum_dataset, args, task_indx))
if args.action_forget_evaluate:
action_prob.append(eval_action_prob(net, continuum_dataset, args, task_indx))
last_task_indx = len(continuum_dataset) - 1
result_a.append(eval_tasks(net, continuum_dataset, args, last_task_indx))
if test_continuum_dataset is not None:
sep_result = eval_tasks(net, test_continuum_dataset, args, last_task_indx)
tensor_sep_result = torch.Tensor(sep_result)
#print (sep_result)
print (tensor_sep_result.mean().item())
time_end = time.time()
time_spent = time_end - time_start
return torch.Tensor(result_a), time_spent, forget_result, action_prob
if __name__ == '__main__':
arg_parser = init_arg_parser()
args = init_config()
if torch.cuda.is_available():
args.use_cuda = True
else:
args.use_cuda = False
print(args, file=sys.stderr)
domains = args.domains
print("training started ...")
train_path_list = read_domain_data(domains, args.train_file, "_train.bin")
if args.dev:
test_path_list = read_domain_data(domains, args.test_file, "_dev.bin")
else:
test_path_list = read_domain_data(domains, args.test_file, "_test.bin")
if args.dev_file:
dev_path_list = read_domain_data(domains, args.dev_file, "_dev.bin")
else:
dev_path_list = None
vocab_path_list = read_domain_data(domains, args.vocab, ".vocab.freq.bin")
continuum_dataset = ContinuumDataset.read_continuum_data(args, train_path_list, test_path_list, dev_path_list, vocab_path_list, domains)
test_continuum_dataset = None
if len(domains) == int(args.num_known_domains):
args.num_known_domains = 1
test_continuum_dataset = ContinuumDataset.read_continuum_data(args, train_path_list, test_path_list, dev_path_list, vocab_path_list, domains)
args.num_known_domains = len(args.domains)
init_parameter_seed()
# unique identifier
uid = uuid.uuid4().hex
print("register parser ...")
parser_cls = Registrable.by_name(args.parser) # TODO: add arg
net = parser_cls(args, continuum_dataset)
result_a, spent_time, forget_results, action_prob = life_experience(net, continuum_dataset, args, test_continuum_dataset)
save_dir = os.path.join(args.save_decode_to, args.parser)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
fname = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
fname += '_parser.' + str(args.parser) + \
'_max_ep.' + str(args.max_epoch) + \
'_samp.' + str(args.sample_method) + \
'_lr.' + str(args.lr) + \
'_perm_sed.' + str(args.seed) + \
'_para_sed.' + str(args.p_seed) + \
'_bat.' + str(args.batch_size) + \
'_nd.' + str(args.num_known_domains) + \
'_e_num.' + str(args.num_exemplars_per_task) + \
'_sm.' + str(args.reg) + \
'_ewc.' + str(args.ewc) + \
'_b_model.' + str(args.base_model) + \
'_init_ep.' + str(args.initial_epoch) + \
'_sec_iter.' + str(args.second_iter) + \
'_cluster_fil.' + str(args.clustering_filter) + \
'_act_num.' + str(args.action_num) + \
'_gate.' + str(args.gate_function) + \
'_proto.' + str(args.init_proto) + \
'_warm.' + str(args.warm) + \
'_dev.' + str(args.dev) + \
'_emb.' + str(args.embed_type)
fname = os.path.join(save_dir, fname)
# save confusion matrix and print one line of stats
stats = confusion_matrix(result_a, fname + '.txt')
one_liner = str(vars(args)) + ' # '
one_liner += ' '.join(["%.3f" % stat for stat in stats])
print(fname + ': ' + one_liner + ' # ' + str(spent_time))
forget_dir_prefix = 'parser.' + str(args.parser) + \
'_max_ep.' + str(args.max_epoch) + \
'_samp.' + str(args.sample_method) + \
'_lr.' + str(args.lr) + \
'_para_sed.' + str(args.p_seed) + \
'_bat.' + str(args.batch_size) + \
'_nd.' + str(args.num_known_domains) + \
'_e_num.' + str(args.num_exemplars_per_task) + \
'_sm.' + str(args.reg) + \
'_ewc.' + str(args.ewc) + \
'_b_model.' + str(args.base_model) + \
'_init_ep.' + str(args.initial_epoch) + \
'_sec_iter.' + str(args.second_iter) + \
'_cluster_fil.' + str(args.clustering_filter) + \
'_act_num.' + str(args.action_num) + \
'_gate.' + str(args.gate_function) + \
'_proto.' + str(args.init_proto) + \
'_warm.' + str(args.warm) + \
'_emb.' + str(args.embed_type)
if args.forget_evaluate:
forget_save_dir = os.path.join(os.path.join(save_dir, forget_dir_prefix), 'forget_examples')
if not os.path.exists(forget_save_dir):
os.makedirs(forget_save_dir)
permute_name = '_perm_sed.' + str(args.seed)
forget_fname = os.path.join(forget_save_dir, permute_name)
write_unforget_examples(continuum_dataset, forget_results, forget_fname + '.txt')
if args.action_forget_evaluate:
forget_save_dir = os.path.join(os.path.join(save_dir, forget_dir_prefix), 'action_prob')
if not os.path.exists(forget_save_dir):
os.makedirs(forget_save_dir)
permute_name = '_perm_sed.' + str(args.seed)
action_forget_fname = os.path.join(forget_save_dir, permute_name)
pickle.dump(action_prob, open(action_forget_fname+ ".stat.bin", 'wb'))
write_action_prob_diff(action_prob, action_forget_fname + '.txt')
if args.record_error:
error_save_dir = os.path.join(os.path.join(save_dir, forget_dir_prefix), 'error')
if not os.path.exists(error_save_dir):
os.makedirs(error_save_dir)
permute_name = '_perm_sed.' + str(args.seed)
error_fname = os.path.join(error_save_dir, permute_name)
pickle.dump(net.train_error, open(error_fname+ ".train.bin", 'wb'))
pickle.dump(net.test_error, open(error_fname+ ".test.bin", 'wb'))