-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmcts.py
169 lines (150 loc) · 5.34 KB
/
mcts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# author : Administrator
# date : 2018/6/26
import numpy as np
import pandas as pd
from game import State
from game import get_opponent
from copy import deepcopy
class Node:
def __init__(self, state: State, parent=None):
self.state = deepcopy(state)
self.untried_actions = state.get_available_actions()
self.parent = parent
self.children = {}
self.Q = 0 # 节点最终收益价值
self.N = 0 # 节点被访问的次数
def weight_func(self, c_param=1.4):
if self.N != 0:
# tip: 这里使用了-self.Q 因为子节点的收益代表的是对手的收益
w = -self.Q / self.N + c_param * np.sqrt(2 * np.log(self.parent.N) / self.N)
else:
w = 0.0
return w
@staticmethod
def get_random_action(available_actions):
action_number = len(available_actions)
action_index = np.random.choice(range(action_number))
return available_actions[action_index]
def select(self, c_param=1.4):
"""
根据当前的子节点情况选择最优的动作并返回子节点
:param c_param: 探索参数用于探索的比例
:return: 最优动作,最优动作下的子节点
"""
weights = [child_node.weight_func(c_param) for child_node in self.children.values()]
action = pd.Series(data=weights, index=self.children.keys()).idxmax()
next_node = self.children[action]
return action, next_node
def expand(self):
"""
扩展子节点并返回刚扩展的子节点
:return: 刚扩展出来的子节点
"""
# 从没有尝试的节点中选择
action = self.untried_actions.pop()
# 获得当前的节点对应的玩家
current_player = self.state.player
# 获得下一步的局面
next_board = self.state.board.copy()
next_board[action] = current_player
# 获得下一步的玩家
next_player = get_opponent(current_player)
# 扩展出一个子节点
state = State(next_board, next_player)
child_node = Node(state, self)
self.children[action] = child_node
return child_node
def update(self, winner):
"""
经过模拟之后更新节点的价值和访问次数
:param winner: 返回模拟的胜者
:return:
"""
self.N += 1
opponent = get_opponent(self.state.player)
if winner == self.state.player:
self.Q += 1
elif winner == opponent:
self.Q -= 1
if self.is_root_node():
self.parent.update(winner)
def rollout(self):
"""
从当前节点进行蒙特卡洛模拟返回模拟结果
:return: 模拟结果
"""
current_state = deepcopy(self.state)
while True:
is_over, winner = current_state.get_state_result()
if is_over:
break
available_actions = current_state.get_available_actions()
action = Node.get_random_action(available_actions)
current_state = current_state.get_next_state(action)
return winner
def is_full_expand(self):
"""
检测节点是否是已经完全扩展了
:return: 返回节点是否完全扩展
"""
return len(self.untried_actions) == 0
def is_root_node(self):
"""
检测节点是否是根节点
:return: 返回节点是否是根节点
"""
return self.parent
class MCTS:
def __init__(self):
self.root = None
self.current_node = None
def __str__(self):
return "monte carlo tree search ai"
def simulation(self, count=1000):
"""
用于模拟蒙特卡罗搜索
:param count: 模拟的次数
:return:
"""
for _ in range(count):
leaf_node = self.simulation_policy()
winner = leaf_node.rollout()
leaf_node.update(winner)
def simulation_policy(self):
"""
模拟过程中找到当前的叶子节点
:return: 叶子节点
"""
current_node = self.current_node
while True:
is_over, _ = current_node.state.get_state_result()
if is_over:
break
if current_node.is_full_expand():
_, current_node = current_node.select()
else:
return current_node.expand()
leaf_node = current_node
return leaf_node
def take_action(self, current_state):
"""
蒙特卡罗模拟选择最优动作
:param current_state: 当前的状态
:return: 最优动作
"""
if not self.root: # 第一次初始化
self.root = Node(current_state, None)
self.current_node = self.root
else:
for child_node in self.current_node.children.values():# 跳转到合适的状态
if child_node.state == current_state:
self.current_node = child_node
break
else: # 游戏重新开始的情况下
self.current_node = self.root
self.simulation(200)
action, next_node = self.current_node.select(0.0)
self.current_node = next_node # 跳转到对手状态上
return action