typora-copy-images-to |
---|
./img |
GNU General Public License v3.0 licensed. Source available on github.com/zifeo/EPFL.
Fall 2017: Statistics for Data Science
[TOC]
-
statistics : leaning from data under uncertainty
-
data : anything that we can mathematically represent
-
statistics cultures
- inference/modeling/uncertainty : focus on interpretability, reduction, statistical efficiency
- prediction/algorithms/optimisation : focus on emulation, automation, computational efficiency
-
uncertainty : measurement error, chaos, intrinsic stochasticity, sampled data, fundamental limitations to precision
-
probability : use model to learn about probability of potential outcomes, given model find probability that outcome is X
-
statistics : data viewed as observed outcomes from model, use outcomes to learn about the model, given outcome tell me interesting about unknown model
-
general framework
- model phenomenon by distribution
$F(y_1,\ldots,y_n;\theta)$ on$\Y^n\subseteq\R^n$ for$n\ge 1$ - distributional form known,
$\theta\in\Theta\in \R^p$ unknown (nonparametric regime if$\Theta$ function of space) - observe realisation
$(Y_1,\ldots,Y_n)^\top\in\Y^n$ - use realisation to make assertions concerning true value of
$\theta$ and quantify uncertainty
- model phenomenon by distribution
-
inference tasks
- estimation : given outcomes, give educated guess for unknown true
$\theta$ - hypothesis testing : which regions
$\Theta_i$ more plausible to contain true$\theta$ that generated outcome - confidence intervals : given outcomes, show range of plausible
$\theta$ - prediction : given outcomes, predict future ones
- classification : given outcomes from various distrubition, declare which generated what
- estimation : given outcomes, give educated guess for unknown true
-
covariates
- marginal inference : i.i.d. entries, same distribution, same parameters
- regression : independent entries, same distribution family, different parameters
-
elementary event : outcome
$\omega$ -
all possible outcome :
$\Omega$ non empty -
event :
$F\subset \Omega$ , occurs whenever outcome belong to$F$ -
union :
$F_1\cup F_2$ -
intersection :
$F_1\cap F_2$ -
complement :
$F^c$ -
disjoint :
$F_1\cap F_2=\emptyset$ -
partition : ${F_n}{n\ge 1}$ s.t. pairwise disjoint $\cup{n\ge 1}F_n=\Omega$
-
difference :
$F_1\setminus F_2=F_1\cap F_2^C$ -
probability measure :
$\mathbb P=P$ defined over$\Omega$ assign probability to event,$P(F)\ge 0$ ,$P(\Omega)=1$ ,$P(F)=\sum_{n\ge 1}P(F_n)$ - complement :
$P(F^c)=1-P(F)$ - intersection :
$P(F_1\cap F_2)\le\min(P(F_1),P(F_2))$ - union :
$P(F_1\cup F_2)=P(F_1) + P(F_2)-P(F_1\cap F_2)$ - continuity from below : ${F_n}{n\ge 1}$ nested events s.t. $F_j\subseteq F{j+1}$,
$F=\cup_{n\ge 1}F_n$ implies$P(F_n)\overset{n\to\infty}{\longrightarrow} P(F)$ - continuity from above : ${F_n}{n\ge 1}$ nested events s.t. $F_j\supseteq F{j+1}$,
$F=\cap_{n\ge 1}F_n$ implies$P(F_n)\overset{n\to\infty}{\longrightarrow} P(F)$
- complement :
-
conditional probability :
$P(F_1\mid F_2)=\frac{P(F_1\cap F_2)}{P(F_2)}$ - law of total probability : partition ${F_n}{n\ge 1}$, $P(G)=\sum{n=1}^\infty P(G\mid F_n)P(F_n)$
- Bayes' theorem : parition ${F_n}{n\ge 1}$, $P(F_j\mid G)=\frac{P(G\mid F_j)P(F_j)}{\sum{n=1}^\infty P(G\mid F_n)P(F_n)}$
- independent : ${G_n}{n\ge 1}$ for any $K$ sub-collection s.t. $P(G{i_1}\cap\cdots\cap G_{i_K})=P(G_{i_1})\times\cdots\times P(G_{i_K})$
-
random variable r.v. : numerical summeries of outcome of random experiment,
$X:\Omega\to\R$ ,${ X\in A}$ denote${ \omega \in \Omega : X(\omega)\in A}$ -
distribution function (cumulative) :
$F_X:\R\to[0,1]$ ,$F_X(x)=P(X\le x)$ - increasing and continuous :
$x\le y \implies F_X(x)\le F_X(y)$ ,$P(X > a)=1-F(a)$ ,$P(a<X\le b)=F_X(b)-F_X(a)$ - bounded :
$\lim_{x\to\infty}F_X(x)=1$ ,$\lim_{x\to-\infty}F_X(x)=0$ - right-continous :
$\lim_{y\downarrow x}F_X(y)=F_X(x)$ - left-limited :
$\lim_{y\uparrow x}F_X(y)$ exists - discontinuities : countable set
$D_x={x\in\R\mid F_X(x)-\lim_{y\uparrow x}F_X(y)>0}$ - discrete r.v. :
$P({X\in D_F})=1$ - continuous r.v. :
$D_X=\emptyset$
- discrete r.v. :
- increasing and continuous :
-
quantile function :
$F^-_X:(0,1)\to\R$ ,$F^-_X(\alpha)=\inf{t\in\R\mid F_X(t)\ge\alpha}$ , if$F_X$ strictly increasing$F^-_X=F_X^{-1}$ -
$\alpha$ -quantile :$q_\alpha=F^-_X(\alpha)$ - random number generation :
$Y\sim Unif(0,1)$ , distribution$F$ , then distribution of$X=F^-(Y)$ is$F$
-
-
probability mass function (frequency) : discrete r.v.,
$f_X:\R\to[0,1]$ ,$f_X(x)=P(X=x)$ s.t.$F_X(x)=\sum_{t\in (-\infty, x]\cap\mathcal X}f_x(t)$ for jumps$\mathcal X={x\in\R\mid f_X(x)>0}$ -
probability density function : continous r.v.,
$f_X:\R\to[0,+\infty)$ ,$F_X(b)-F_X(a)=\int_a^bf_X(t)dt$ s.t.$f_X(x)=F_X'(x)$ but$f_X(x)\not=P(X=x)=0$ -
transforms
- mass function :
$Y=g(X)$ as$\Y=g(\X)$ s.t.$F_Y(y)=P(g(X)\le y)=\sum_{x\in\X} f_X(x)1{g(x)\le y};\forall y\in\Y$ and$f_Y(y)=P(g(X)= y)=\sum_{x\in\X} f_X(x)1{g(x)= y};\forall y\in\Y$ - density function :
$Y=g(X)$ as$\Y=g(\X)$ , monotone, continuously differentiable, non-vashnising derivative,$f_Y(y)=\abs{\frac{\partial}{\partial y}g^{-1}(y)}f_X(g^{-1}(y))$
- mass function :
-
random vector :
$\bs X=(X_1,\ldots X_d)^\top$ - joint distribution function :
$F_\bs X (x_1,\ldots, x_d)=P(X_1\le x_1,\ldots,X_d\le x_d)$ - joint frequency function :
$f_\bs X(x_1,\ldots,x_d)=P(X_1=x_1,\ldots, X_d=x_d)$ - joint density function :
$F_\bs X(x_1,\ldots,x_d)=\int_{-\infty}^{x_1} \cdots\int_{-\infty}^{x_d}f_\bs X(u_1,\ldots,u_d)du_1 \cdots du_d$ and$f_\bs X(x_1,\ldots,x_d)=\frac{\partial^d}{\partial x_1\cdots\partial x_d}F_\bs X(x_1,\ldots,x_d)$
- joint distribution function :
-
marginal distribution : do not uniquely determine join distribution
- discrete :
$f_{X_i}(x_i)=P(X_i=x_i)=\sum_{x_1}\cdots\sum_{x_{i-1}}\sum_{x_{i+1}}\cdots\sum_{x^d}f_\bs X(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots, x_d)$ - continuous :
$f_{X_i}(x_i)=\int_{-\infty}^\infty\cdots\int_{-\infty}^\infty f_\bs X(y_1,\ldots,y_{i-1},y_i,y_{i+1},\ldots, y_d)dy_1\cdots dy_{i-1} dy_{i+1}\cdots dy_d$
- discrete :
-
conditinal distribution :
$f_{X_1,\ldots,X_k\mid X_{k+1},\ldots, X_d}(x_1,\ldots,x_k\mid x_{k+1},\ldots, x_d)=\frac{f_{X_1,\ldots,X_d}(x_1,\ldots,x_k,x_{k+1},\ldots,x_d)}{f_{X_{k+1},\ldots, X_d}(x_{k+1},\ldots, x_d)}$ -
independence :
$F_{X_1,\ldots,X_d}(x_1,\ldots,x_d)=F_{X_1}(x_1)\times\cdots\times F_{X_d}(x_d)$ and$f_{X_1,\ldots,X_d}(x_1,\ldots,x_d)=f_{X_1}(x_1)\times\cdots\times f_{X_d}(x_d)$ -
conditional independence :
$X\indep_Z Y$ or$X\indep Y\mid Z$ s.t.$F_{X_1,\ldots,X_d\mid Y,Z}(x_1,\ldots, x_d)=F_{X_1,\ldots, X_d\mid Z}(x_1,\ldots,x_d)$ and$f_{X_1,\ldots,X_d\mid Y,Z}(x_1,\ldots,x_d)=f_{X_1,\ldots,X_d\mid Z}(x_1,\ldots,x_d)$ , implies$X\indep_Z Y\iff Y\indep_Z X$ -
multivariate transforms : differenciable bijection
$g(x)=(g_1(x),\ldots,g_n(x))$ ,$\bs Y=g(\bs X)$ as$\Y^n=g(\X^n)$ ,$f_\bs Y(y)=f_\bs X(g^{-1}(y))\abs{\det[J_{g^{-1}}(y)]}$ with $J_{g^{-1}(y)}=\begin{bmatrix}\frac{\partial}{\partial x_1}g_1^{-1}(y) & \cdots & \frac{\partial}{\partial x_n}g_1^{-1}(y) \ \vdots & \ddots & \vdots \ \frac{\partial}{\partial x_1}g_n^{-1}(y) & \cdots & \frac{\partial}{\partial x_n}g_n^{-1}(y)\end{bmatrix}$- convolution :
$f_{X+Y}(u)=\int_{-\infty}^\infty f_X(u-v)f_Y(v)dv$
- convolution :
-
moments
-
expected value :
$\mathbb E[X]$ - continuous :
$E[h(X)]=\int_{-\infty}^\infty h(x)f_X(x)dx$ - discrete :
$E[h(X)]=\sum_{x\in\X}h(x) f_X(x)$ - linearity :
$E[X_1+aX_2]=E[X_1]+a E[X_2]$ - mean vector :
$E[\bs X]=(E[X_1] \cdots E[X_d])^\top$
- continuous :
-
variance :
$Var(X)=E[(X - E[X])^2]=E[X^2]-E[X]^2=cov(X,X)$ - covariance : degree of linear dependency (only linear) between two r.v.,
$cov(X_1,X_2)=E[(X_1-E[X_1])(X_2-E[X_2])]=E[X_1X_2]-E[X_1]E[X_2]$ - correlation : invariant to scale and fixed range version of covariance,
$Corr(X_1,X_2)=\frac{cov(X_1,X_2)}{\sqrt{Var(X_1)Var(X_2)}}$ - inequality : consequence of Cauchy-Schwarz,
$\abs{Corr(X_1,X_2)}\le\sqrt{Var(X_1)Var(X_2)}$
- inequality : consequence of Cauchy-Schwarz,
- properties :
$Var(aX+b)=a^2Var(X)$ ,$Var(\sum_i X_i)=\sum_i Var(X_i)+\sum_{i\not = j}cov(X_i,X_j)$ ,$cov(aX_1+bX_2,Y)=acov(X_1,Y)+bcov(X_2,Y)$ - independence : implies
$E[X_1X_2]=E[X_1][X_2]$ ,$cov(X_1,X_2)=0$ ,$Var(X_1\pm X_2)=Var(X_1)\pm Var(X_2)$
- covariance : degree of linear dependency (only linear) between two r.v.,
-
conditional expectation :
$E[X\mid Y]=q(Y)$ - discrete :
$E[X\mid Y=y]=\sum_{x\in\X} xP[X=x\mid Y=y]$ - continuous :
$E[X\mid Y=y]=\int_{-\infty}^\infty x f_{X\mid Y}(x\mid y)dx$ - interpretation :
$E[X\mid Y]=\arg\min_g\norm{X-g(Y)}^2$ , among all measurable functions$E[X\mid Y]$ best approximates$X$ in mean square - unbiasedness :
$E[E[X\mid Y]]=E[X]$ - taking out factors :
$E[g(Y)X\mid Y]=g(Y)E[X\mid Y]$ - tower property :
$E[E[X\mid Y]\mid g(Y)]=E[X\mid g(Y)]$
- discrete :
-
conditional variance :
$var[X\mid Y]=E[(X-E[X\mid Y])^2\mid Y]=E[X^2\mid Y]-E[X\mid Y]^2$ - law total variance :
$var(X)=E[var[X\mid Y]]+var(E[X\mid Y])$
- law total variance :
-
covariance matrix :
$\bs \Omega={\Omega_{ij}}$ with$\Omega_{ij}=cov(Y_i,Y_j)=E[(\bs Y-\bs\mu)(\bs Y-\bs\mu)^\top]=E[\bs Y\bs Y^\top]-\bs\mu\bs\mu^\top$ - linear transforms : for
$\bs Y$ random$d\times 1$ vector- vector
$\bs\beta\in\R^p$ : variance$\bs\beta^\top\bs\Omega\bs\beta\ge 0$ of$\bs\beta^\top\bs Y$ -
$p\times d$ matrix$\bs A$ : mean$\bs A\bs\mu$ and covariance$\bs A\bs\Omega\bs A^\top$ of$\bs A\bs Y$ - vectors
$\bs\beta,\bs\gamma\in\R^p$ : covariance$\bs\gamma^\top\bs\Omega\bs\beta$ of$\bs\beta^\top\bs Y$ with$\bs\gamma^\top\bs Y$
- vector
- linear transforms : for
-
inequalities
- markov :
$P[X\ge \epsilon]\le\frac{E[X]}{\epsilon}$ - chebyshev :
$P[\abs{X-E[X]}\ge\epsilon]\le\frac{var[X]}{\epsilon^2}$ - jensen :
$\varphi(E[X])\le E[\varphi(X)]$ for any convex$\varphi$ - monotonicity and covariance :
$cov[X,g(X)]\ge 0$ ,$g$ decreasing
- markov :
-
generating functions MGF :
$M_X(t):\R\to\R\cup{\infty}$ ,$M_X(t)=E[e^{tX}]$ - moments :
$E[X^k]=\frac{d^kM_X}{dt^k}(0)$ - independance :
$M_{X+Y}=M_XM_Y$ - random vector :
$M_\bs X(\bs u)=E[e^{\bs u^\top\bs X}]$
- moments :
-
-
bernoulli :
$X\sim Bern(p)$ ,$\X={0,1}$ with$p\in(0,1)$ $f(x)=p1{x=1}+(1-p)1{x=0}$ $E[X]=p$ $var[X]=p(1-p)$ $M(t)=1-p+pe^t$ $\hat p=\bar Y$
-
binomial :
$X\sim Binom(n,p)$ ,$\X={0,1,\ldots,n}$ with$p\in(0,1)$ ,$n\in\N$ $f(x)={n\choose x}p^x(1-p)^{n-x}$ $E[X]=np$ $var[X]=np(1-p)$ $M(t)=(1-p+pe^t)^n$ -
$X=\sum_{i=1}^n Y_i$ with$Y\sim Bern(p)$
-
geometric :
$X\sim Geom(p)$ ,$\X={0}\cup\N$ with$p\in(0,1)$ $f(x)=(1-p)^x p$ $E[X]=\frac{1-p}{p}$ $var[X]=\frac{1-p}{p^2}$ -
$M(t)=\frac{p}{1-(1-p)e^t}$ for$t<-\log(1-p)$ -
$X=\min{k\in\N \mid Y_k=1}-1$ with$Y\sim Bern(p)$ - memoryless :
$P(X>m+n\mid X \ge m)=P(X>n)$
-
negative binomial :
$X\sim NegBin(r,p)$ ,$\X={0}\cup\N$ with$p\in(0,1)$ ,$r>0$ $f(x)={x+r-1\choose x}(1-p)^xp^r$ $E[X]=r \frac{1-p}{p}$ $var[X]=r\frac{1-p}{p^2}$ -
$M(t)=\frac{p^r}{[1-(1-p)e^t]^r}$ for$t<-\log(1-p)$ -
$X=\sum_{i=1}^n Y_i$ with$Y\iid Geom(p)$
-
poisson :
$X\sim Poisson(\lambda)$ ,$\X={0}\cup\N$ with$\lambda >0$ $f(x)=e^{-\lambda}\frac{\lambda^x}{x!}$ $E[X]=\lambda$ $var[X]=\lambda$ $M(t)=e^{\lambda(e^t-1)}$ $\hat\lambda=\bar Y$ - ${Y_n}{n\ge 1}$ with $Y\sim Binom(n,p)$ follows $f{Y_n}\overset{n\to\infty}{\to}f_X$ with
$\lambda=np$ -
$X\sim Poisson(\lambda)$ and$Y\sim Poisson(\mu)$ independent, conditional of$X$ given$X+Y=k$ is$Binom(k,\lambda/(\lambda +\mu))$
-
multinomial :
$\bs X\sim Multi(n, p_1,\ldots, p_k)$ ,$\bs\X={0,1,\ldots,n}^k$ with$\bs p\in(0,1)^k$ s.t.$\sum_{i=0}^k p_i=1$ $f(x_1,\ldots,x_k)=\frac{n!}{x_1!\cdots x_k!}p_1^{x_1}\cdots p_k^{x_k}1{\sum_{i=1}^k x_i=n}$ $E[X_i]=np_i$ $var[X_i]=np_i(1-p_i)$ $cov(X_i,X_j)=-np_ip_j$ $M(u_1,\ldots,u_k)=(\sum_{i=1}^kp_i e^{u_i})^n$ - generalize binonial :
$n$ independent trial,$k$ possible outcomes -
$X=\sum_{i=1}^n Y_i$ with$Y\iid Poisson(\lambda_i)$ with$p_i=\frac{\lambda_i}{\lambda_1+\cdots +\lambda_k}$
-
uniform :
$X\sim Unif(\theta_1,\theta_2)$ with$\theta_1<\theta_2$ -
$f(x)=(\theta_2 - \theta_1)^{-1}$ if$x\in(\theta_1,\theta_2)$ else$0$ $E[X]=(\theta_1+\theta_2)/2$ $var[X]=(\theta_2-\theta_1)^2/12$ -
$M(t)=\frac{e^{t\theta_2}-e^{t\theta_1}}{t(\theta_2-\theta_1)}$ for$t\not=0$ ,$M(0)=1$ -
$\p=Y_{(n)}$ for$Unif(0,\t)$ , non-differentiable
-
-
exponential :
$X\sim Exp(\lambda)$ with$\lambda > 0$ -
$f(x)=\lambda e^{-\lambda x}$ if$x\ge 0$ else 0 $E[X]=\lambda^{-1}$ $E[X]=\lambda^{-2}$ -
$M(t)=\frac{\lambda}{\lambda -t}$ for$t<\lambda$ $\hat\lambda=1/\bar Y$ - memoryless :
$P(X>t+s\mid X>t)=P(X>s)$ -
$X\sim Exp(\lambda_1)$ ,$Y\sim Exp(\lambda_2)$ independent,$Z=\min{X, Y}\sim Exp(\lambda_1+\lambda_2)$
-
-
gamma :
$X\sim Gamma(r,\lambda)$ with shape$r>0$ , scale$\lambda >0$ -
$f(x)=\frac{\lambda^r}{\Gamma(r)}x^{r-1}e^{-\lambda x}$ if$x\ge 0$ else 0 $E[X]=r/\lambda$ $var[X]=r/\lambda^2$ -
$M(t)=(\frac{\lambda}{\lambda - t})^r$ for$t<\lambda$ -
$Y=\sum_{i=1}^r Y_i$ with$Y\iid Exp(\lambda)$ , special case Erlang distribution
-
-
gaussian :
$X\sim N(\mu,\sigma^2)$ with mean$\mu\in\R$ , variance$\sigma^2>0$ $f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$ $E[X]=\mu$ $var[X]=\sigma^2$ $M(t)=e^{t\mu+t^2\sigma^2/2}$ $(\hat\mu,\hat\sigma^2)=(\bar Y,\frac{1}{n}\sum_{i=1}^n(Y_i-\bar Y)^2)$ - standard normal :
$Z\sim N(0,1)$ with density$\varphi(z)=f_Z(z)$ and CDF$\Phi(z)=F_Z(z)$ - addition closure :
$aX+b\sim N(a\mu+b,a^2\sigma^2)$ ,$F_X(x)=\Phi(\frac{x-\mu}{\sigma})$ ,$S=\sum_{i=1}^n X_i\sim N(\sum_{i=1}^n\mu_i,\sum_{i=1}^n\sigma_i^2)$ for$X\iid N(\mu_i,\sigma^2_i)$
-
chi-square :
$X\sim \chi_k^2$ with$k$ degree of freedom,$Gamma(k/2,1/2)$ -
$f(x)=\frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1}e^{-x/2}$ if$x\ge 0$ else$0$ $E[X]=k$ $var[X]=2k$ -
$M(t)=(1-2t)^{-k/2}$ for$t<1/2$
-
-
student's t :
$X\sim t_k$ $f(x)=\frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})\sqrt{k\pi}}(1+\frac{x^2}{k})^{-\frac{k+1}{2}}$ -
$E[X]=0$ for$k>2$ else undefined for$k=1$ -
$var[X]=\frac{k}{k-2}$ for$k>2$ else undefined -
$M(t)$ undefined
-
Snedecor-Fisher F :
$X\sim F_{d_1,d_2}$ -
$f(x)=\frac{1}{B(d_1/2,d_2/2)}(\frac{d_1}{d_2})^{d_1/2}x^{d_1/2-1}(1+\frac{d_1}{d_2}x)^{-\frac{d_1+d_2}{2}}$ if$x\ge 0$ else$0$ -
$E[X]=\frac{d_2}{d_2-2}$ for$d_2>2$ -
$var[X]=\frac{2d_2^2(d_1+d_2-2)}{d_1(d_2-4)(d_2 - 2)^2}$ for$d_2>4$ -
$M(t)$ does not exist
-
- entropy : instrinsic disorder or unpredictability,
$H(X)=-E[\log f_X(X)]$ - discrete :
$-\sum_{x\in\X} f_X(x)\log f_X(x)$ ,$H(X)\ge 0$ ,$H(g(X))\le H(X)$ - continuous :
$-\int_{-\infty}^\infty f_X(x)\log f_X(x) dx$
- discrete :
- Kullback-Leibler divergence :
$KL(q\mid\mid p)=E[-\log(q(x)/p(x))]=\int_{-\infty}^\infty p(x)\log\frac{p(x)}{q(x)}dx\ge 0$ , lack symmerty and triangle inequality - maximum entropy :
$H(f)=-\int_\X f(x)\log f(x) dx$ under$k$ linear constraints$\int_\X T_i(x)f(x)dx=\alpha_i$ - highest entropy solution :
$f(x)=Q(\lambda_1,\ldots,\lambda_k)\exp(\sum_{i=1}^k\lambda_i T_i(x))$
- highest entropy solution :
-
$k$ -parameter exponential family : admit representation$f(y)=\exp(\sum_{i=1}^k \phi_iT_i(y)-\gamma(\phi_1,\ldots,\phi_k)+S(y))$ with$\bs\phi=(\phi_1,\ldots,\phi_k)\in\bs\Phi\subseteq\R^k$ ,$T_i:\Y\to\R$ ,$S:\Y\to\R$ ,$\gamma:\R^k\to\R$ real-valued, support independ of$\phi$ - members : binomial, negative binomial, poisson, gamma, gaussian, pareto, weibull, laplace, lognormal, inverse gaussian, inverse gamma, normal-gamma, beta, multinomial, ...
- non-members : student's t, mixtures
- usual parametrization :
$\exp(\sum_{i=1}^k\eta_i(\theta)T_i(y)-d(\theta)+S(y))$ with$\phi=\eta(\theta)$ and$d(\theta)=\gamma(\eta(\theta))$
- sampling : distribution known,
$\theta\in\Theta$ unknown- sample : realisation from that distribution
- assertions : concerning true value of
$\theta$ ,$T(Y_1,\ldots,Y_n)$ of sample
- statistic : any function whose domain is sample space
$\Y^n$ but does not itself depend on unknown parameters,$T:\Y^n\to\R^q$ - ancillary statistic : does not depend on
$\theta$ , no information on it - level sets of a statistic :
$A_t={\bs y\in\Y^n\mid T(\bs y)=t }$ - sufficient statistic :
$F_{\bs Y\mid T(\bs Y)=t}(Y_1,\ldots,Y_n)=P[Y_1\le y_1,\ldots,Y_n\le y_n\mid T(Y_1,\ldots, Y_n)=t]$ does not depend on$\theta$ - Fisher-Neyman factorization theorem :
$T=T(\bs Y)$ sufficient iff$f(\bs y;\theta)=g(T(\bs y),\theta)h(\bs y)$ - exponential family : sufficient
$\tau_j(y_1,\ldots, y_n)=\sum_{i=1}^n T_j(y_i)$ as$f_{Y_1,\ldots, Y_n}(y_1,\ldots, y_n)=\exp(\sum_{j=1}^k\phi_j\tau_j(y_1,\ldots,y_n)-n\gamma(\phi_1,\ldots,\phi_n)+\sum_{i=1}^n S(y_i))$
- exponential family : sufficient
- minimally sufficient statistic : if for any other sufficient static
$S=S(\bs Y)$ ,$\exists g\enspace T(\bs y)=g(G(\bs Y))$ , if multiple there is bijection in between- suppose
$f(\bs y;\theta)/f(\bs z;\theta)$ independent of$\theta$ iff$T(\bs y)=T(\bs z)$ , then$T$ minimally sufficient
- suppose
- sampling distribution :
$F_T(t_1,\ldots,t_p)=P[T_1(Y_1,\ldots,Y_n)\le t_1,\ldots,T_q(Y_1,\ldots, Y_n)\le t_q]$ under$F(y_1,\ldots,y_n;\theta)$ , often$q=1$ , depends on unknown$\theta$ , distribution of a statistic- gaussian sufficient statistics :
$Y_1,\ldots,Y_n\iid N(\mu,\sigma^2)$ -
$\bar Y=\frac{1}{n}\sum_{i=1}^n Y_i$ with$\bar Y\sim N(\mu,\sigma^2/n)$ and$E[\bar Y]=\mu$ ,$var(\bar Y)=\frac{\sigma^2}{n}$ -
$S^2=\frac{1}{n-1}\sum_{i=1}^n (Y_i-\bar Y)^2$ with$\frac{n-1}{\sigma^2}S^2\sim \chi^2_{n-1}$ and$E[S^2]=\sigma^2$ ,$var(S^2)=\frac{2\sigma^4}{n-1}$ -
$(\bar Y, S^2)$ minimally sufficient for$(\mu,\sigma^2)$ -
$\bar Y$ independent$S^2$
-
- exponential family : if
$\bs\phi=(\phi_1,\ldots,\phi_k)^\top\in\bs\Phi$ open,$\gamma$ infinitely differentiable in all$k$ variable and $E[\bs \tau]=n\nabla_\bs\phi\gamma(\bs\phi) $ with$cov[\tau]=n\nabla^2_\bs\phi\gamma(\bs\phi)$
- gaussian sufficient statistics :
- sum of gaussian squares :
$Z_i\iid N(0,1)$ ,$Z_1^2+\cdots+Z_k^2\sim \chi_k^2$ - gaussian empirically standardise mean :
$Y_i\iid N(\mu,\sigma^2)$ ,$\frac{\bar Y-\mu}{S/\sqrt{n}}\sim t_{n-1}$ - ratio of gaussian sum of squares :
$Y_1\sim\chi^2_{d_1}$ ,$Y_2\sim\chi^2_{d_2}$ ,$\frac{Y_1/d_1}{Y_2/d_2}\sim F_{d_1,d_2}$ - approximate sampling behaviour : sampling distribution not always obtainable in a closed/convient form, approximate it by simpler distribution
- in distribution (weak) :
$F_n\overset{d}{\to}G$ whenever$F_n(y)\overset{n\to\infty}{\to}G(y)$ with$\lim_{\epsilon\to 0}G(y+\epsilon)=G(y)$ , pointwise convergence, discontinuity points might not converge - in probability :
$Y_n\overset{p}{\to} Y$ whenever$P(\abs{Y_n-Y}>\epsilon)\overset{n\to\infty}{\to}0$ $\forall\epsilon>0$ - hierarchy
-
$Y_n\overset{p}{\to} Y$ implies$Y_n\overset{d}{\to}Y$ -
$Y_n\overset{d}{\to}c$ implies$Y_n\overset{p}{\to}c$
-
- continuous mapping :
$g$ continous on$Y$ range-
$Y_n\overset{p}{\to}Y$ implies$g(Y_n)\overset{p}{\to}g(Y)$ -
$Y_n\overset{d}{\to}Y$ implies$g(Y_n)\overset{d}{\to}g(Y)$
-
- Slutsky's theorem :
$X_n\overset{d}{\to} X$ ,$Y_n\overset{d}{\to}c$ ,$g(X_n,Y_n)\overset{d}{\to}g(X,c)$ - law of large number : iid,
$n^{-1}(Y_1+\cdots+Y_n)\overset{p}{\to}\mu$ , for large$n$ ,$\bar Y\approx N(\mu,\sigma^2/n)$ - central limit theorem CLT : iid,
$\sqrt{n}(\frac{1}{n}\sum_{i=1}^n Y_i-\mu)\overset{d}{\to}N(0,\sigma^2)$ , for large n$Y_1+\cdots+Y_n\approx N(n\mu,n\sigma^2)$ - vector :
$\sqrt{n}(\bar{\bs X} -\bs\mu)\overset{d}{\to}N_d(0,\bs \Omega)$
- vector :
- delta method :
$a_n(X_n-\theta)\overset{d}{\to} Z$ with$g$ continuously differentiable,$a_n(g(X_n)-g(\theta))\overset{d}{\to}g'(\theta) Z$ as$a_n\uparrow\infty$ - exponential family :
$\bar T_n=n^{-1}\tau(X_1,\ldots,X_n)$ ,$\sqrt{n}(\bar T_n-\gamma'(\phi)\overset{d}{\to}N(0,\gamma''(\phi))$ - vector :
$a_n(g(\bs X_n)-g(\bs u))\overset{d}{\to}J_g(\bs u)\bs Z$
- exponential family :
- weighted sum CLT : iid,
$sup_{1\le j\le n}\frac{\gamma_j^2}{\sum_{i=1}^n \gamma_i^2}\overset{n\to\infty}{\to}0$ implies$\frac{1}{\sqrt{\sum_{i=1}^n\gamma^2_i}}\sum_{i=1}^n\gamma_i W_i\overset{d}{\to}N(0,1)$ - Cramér-Wold device :
$\bs Y_n\overset{d}{\to}\bs Y$ iff$\bs u^\top\bs Y_n\overset{d}{\to}\bs u^\top\bs Y$ $\forall\bs u\in \R^n$ - Berry-Essen theorem : multivariate CLT with
$\bs\mu=0$ and$\bs\Omega=\bs I$ ,$sup_{u\in\R^d}\abs{F_{\sqrt{n}\bar Y}(\bs u)-F_Z(\bs u)}\le Cn^{-1/2}d^{1/4}E \norm{\bs Y_i}^3$
- estimator : r.v.
$\hat \Theta$ where$\Theta$ deterministic parameters - point estimator : statistic with codomain
$T:Y^n\to\Theta$ - mean squared error : capture both notions of location and spread,
$MSE(\p,\theta)=E[\norm{\p-\t}^2]$ - bias-variance decomposition :
$MSE(\p,\t)=\norm{E[\p]-\t}^2+E[\norm{\p-E[\p]}^2]=bias + variance$ - consistency : if
$\p_n\overset{p}{\to}\t$ as$n\to\infty$ -
$P(\norm{\p-\t}>\epsilon)\le\frac{MSE(\p,\t)}{\epsilon^2}$ ,$MSE(\p_n,\t)\overset{n\to\infty}{\to}0$ vanishing MSE implies consistency but not the converse
-
- identifiability : probability model ${F_\t}{\t\in\Theta}$ idenfiable if for any pair $\t_1$ and $\t_2$, $\t_1\not=\t_2$ implies $F{\t_1}\not=F_{\t_2}$
- Fisher information :
$\I_n(\t)=E[(\frac{\partial}{\partial\t}\log f(Y;\t))^2]=-E[\frac{\partial^2}{\partial\t^2}\log f(Y;\t)]$ ,$\I_n(\t)=n\I_1(\t)$ for iid, 1 over curvature - Cramér-Rao lower bound : unbiased estimator
$var(\p(Y))\ge 1/\I_n(\t)$ (by Cauchy-Schwartz)- tight achievable : reach lower bound iff density
$Y$ is one parameter expoential family with sufficient statistic$\p$
- tight achievable : reach lower bound iff density
- Rao-Blackwell theorem : unbiased estimator
$\p$ , sufficient$T$ for$\t$ , $var(\p^)\le var(\p)$ with $\p^=E[\p\mid T]$, equality iff$P_\t(\p^*=\p)=1$ - $\p_T^$, $\p_S^$,
$T=h(S)$ implies $var(\p^_T)\le var(\p^_S)$
- $\p_T^$, $\p_S^$,
- likelihood :
$L(\t)=F(Y_1,\ldots,Y_n;\t)$ , if iid$L(\t)=\Pi_{i=1}^n f(Y_i;\t)$ , joint density/frequency- discrete case : probability of observing our sample as function of
$\t$ - continuous case : probability of observing something in neighbourhood of our sample as function of
$\t$
- discrete case : probability of observing our sample as function of
- maximum likelihood estimator MLE :
$\p$ s.t.$L(\t)\le L(\p)$ $\forall\t\in\Theta$ , unique$\arg\max_{\t\in\Theta}L(\t)$ - equivariance :
$\p$ MLE of$\t$ ,$g$ bijection,$g(\p)$ MLE of$g(\t)$ - if differentiable :
$\nabla_\t L(\t)=0$ - check maximum :
$-\nabla^2_t L(\t)|_{\t=\p}>0$ - loglikelihood :
$l(t)=\log L(\t)$ - consistency
-
$\t\in\R$ : yes, if regular enough and MLE unique -
$\t\in R^p$ : need more info such as concavity + existence (exponential families)
-
- equivariance :
- asymptotic distribution of MLE : iid, regular enough, MLE existence and consistency implies
$\sqrt{n}(\p_n-\t)\overset{d}{\to}N(0,\frac{\I_1(\t)}{\mathcal J^2_1(\t)})$ , interpreted as$\p_n\overset{d}{\approx}N(\t,\frac{1}{n\I_1(\t)})\equiv N(\theta,\frac{1}{\I_n(\t)})$ - meaning. MLE is approximately normally distributed, unbiased and achieving Cramér-Rao lower bound
- regularity conditions
-
$\Theta$ open subset - support of
$suppf$ independent of$\t$ -
$f$ thrice continuously differentiable w.r.t.$\t$ -
$E_\t[l'(X_i;\t)]=0;\forall\t$ ,$var_\t[l'(X_i;\t)]=\I_1(\t)\in(0,\infty);\forall\t$ $-E_\t[l''(X_i;\t)]=\mathcal J_1(\t)\in(0,\infty);\forall\t$ -
$\exists M(x)>0$ and$\delta > 0$ s.t.$E_{\t_0}[M(X_i)]<\infty$ and$\abs{\t-\t_0}<\delta$ implies$\abs{l'''(x;\t)}\le M(x)$
-
- for any r.v. $\t^n$ on segment $\p_n$ and $\t_0$, $R_n=(\p_n-\t)\frac{1}{2n}\sum{i=1}^n l'''(X_i;\t^_n)\overset{p}\to 0$
- James-Stein estimator :
$\bs Y\sim N(\bs \mu,\bs I_{n\times n})$ ,$\bs\mu\in\R^n$ ,$\tilde{\bs\mu}_a=(1-\frac{a}{\norm{\bs Y}^2})$ $\bs Y=(1-\frac{a}{\norm{\hat{\bs\mu}}^2})\hat{\bs\mu}$ ,$n\ge 3$ -
$\forall a\in(0,2n-4)$ ,$MSE(\tilde{\bs\mu}_a,\bs\mu)\le MSE(\hat{\bs\mu},\bs\mu)$ - for
$a=n-2$ ,$MSE(\tilde{\bs\mu}_{n-2},0)<MSE(\tilde{\bs\mu},0)$ -
$\forall\bs\mu\in\R^n$ and$\forall a\in(0,2n-4)$ ,$MSE(\tilde{\bs\mu}_{n-2},\bs\mu)\le MSE(\tilde{\bs\mu}_a,\bs\mu)$
-
- loss function :
$\L(\p,\t)$ convex measure of performance, remplace$\norm{\p-\t}$ - risk : expected loss
$R(\p,\t)=E[\L(\p,\t)]$ - can avoid skewed penalization, MSE on positive domain bound underestimation error
- risk : expected loss
- decision theory : decision rules should be compared by their risk functions
- family of distribution
$\mathcal F$ , game variant - parameter space
$\Theta$ , parameterize family - data space
$\mathcal Y^n$ , space of possible outcomes - action space
$\mathcal A$ , possible actions or decisions available - loss function
$\L:\Theta\times \mathcal A\to\R^+$ , how much to pay when losing - set
$\mathcal D$ of decision rules : any$\delta\in\mathcal D$ measurable function$\delta:\mathcal\Y^n \to\mathcal A$ , possible strategies, risk$R(\delta,\theta)=E[\L(\delta(\bs Y),\theta)]$ - comparisons
- uniform : hard, seek dominance everywhere
- minimax : relaxed, compare worst-case risks,
$sup_{\t\in\theta}R(\t,\delta)\le\sup_{\t\in\Theta}R(\t,\delta')$ , overly conservative -
$\pi$ -bayes : relaxed, compare average risk,$r(\pi,\delta)=\int_\Theta R(\t,\delta)\pi(\t)d\t=\int_\Theta\int_\chi L(\t,\delta(y))f_\t(y)dy\pi(\t)d\t$ with prior$\pi$ , cannot be uniformly dominated
- family of distribution
- context : disjoint regions
$\Theta_0$ and$\Theta_1$ - null hypothesis :
$H_0$ states$\t\in\Theta_0$ - alternative hypothesis :
$H_1$ states$\t\in\Theta_1$
- null hypothesis :
- test function :
$\delta:\mathcal Y^n\to{0,1}$ as$\delta(Y_1,\ldots,Y_n)=1{T(Y_1,\ldots,Y_n)\in C}$ where$T$ test statistic and$C$ critical region subset of range of$T$ - errors : Bernouilli-like,
$\mathcal A={0,1}$ - action/truth:
$H_0$ $H_1$ -
$0$ 😄 type II error -
$1$ type I error 😄
- action/truth:
-
$0$ $-$1 loss :$\L(a,\t)=\cases{1& \text{if};\t\in\Theta_0, a=1;\text{(type I error)}\ 1 &\text{if};\t\in\Theta_1, a=0;\text{(type II error)}\ 0&\text{otherwise}\qquad\quad!\text{(no error)}}$ - risk :
$R(\delta,\t)=P_\t[\delta=1]1{\t\in\Theta_0}+P_\t[\delta = 0]1{\t\in\Theta_1}$ - Neyman-Pearson framework : in application one type of error is more severe, exploit asymmetry by fixing tolerance ceiling for this error, consider only test function that respect it and focus on minimising the other
- fix :
$\alpha\in(0,1)$ - test :
$\delta\in\mathcal D(\Theta_0,\alpha)={\delta: sup_{\t\in\Theta_0} P_\t[\delta=1]\le\alpha}$ , type I error bounded above by$\alpha$ - minimize :
$P_\t[\delta(X)=0]=1-P_\t[\delta(X)=1]$ - or maximize power :
$\beta(\t,\delta)=P_\t[\delta(X)=1]=E_\t[1{\delta(X)=1}]=E_\t[\delta(X)]$
- fix :
- most powerful ML test : continuous case,
$H_0:f=f_0$ ,$H1:f=f_1$ ,$\Lambda(Y)=f_1(Y)/f_0(Y)$ ,$\exists k>0$ s.t.$P_0[\Lambda(Y)\ge K]=\alpha$ with test of$H_0$ vs$H_1$ at significance level$\alpha$ ,$\delta(Y)=1{\Lambda(Y)\ge k}$ , optimal- reject if likelihood of
$\t_1$ $k$ times higher than$\t_0$ - unless continuous, not guarantee to exist
- reject if likelihood of
- one sided hypotheses : often uniformly most powerful test depending on model
- likelihood ratio statistic LRT :
$H_0:\t\in\Theta_0$ ,$H_1:\t\in\Theta_1$ ,$\Lambda(Y)=\frac{sup_{\t\in\Theta}f(Y;\t)}{sup_{\t\in\Theta_0}f(Y;\t)}=\frac{sup_{\t\in\Theta}L(\t)}{sup_{\t\in\Theta_0} L(\t)}$ - distribution :
$dist(\Lambda)$ most often intractable - asymptotic approximation :
$\Theta$ open subset of$\R^p$ , either$\Theta_0={\t_0}$ or open subset$\R^s$ with$s<p$ , iid, restrict attention to$H_0:\t=\t_0$ vs$H_1:\t\not=\t_0$ , give$\Lambda_n(Y)=\Pi_{i=1}^n\frac{f(Y_i;\hat\t_n)}{f(Y_i;\t_0)}$ where$\hat\t_n$ MLE of$\t$
- distribution :
- Wilks' theorem : iid, regular enough with
$\I_i(\t)=\mathcal J_1(\t)$ ,- case
$p=1$ : MLE sequence$\hat\t_n$ consistent for$\t$ implies likelihood ratio statistic$\Lambda_n$ for$H_0:\t=\t_0$ satisfying$2\log\Lambda_n\overset{d}{\to} V\sim\chi_1^2$ when$H_0$ true - case general
$s\le p$ : MLE sequence$\hat\t_n$ consistent for$\t$ implies likelihood ratio statistic$\Lambda_n$ for$H_0:{\t_j=\t_{j,0}}_{j=1}^s$ satisfying$2\log\Lambda_n\overset{d}{\to} V\sim\chi_s^2$ when$H_0$ true
- case
- other tests
- Wald's test
- Score test
-
$p$ -value : for ${\delta_\alpha}{\alpha\in(0,1)}$ family of test functions satisfying $\alpha_1<\alpha_2$implies ${y\in\mathcal Y^n:\delta{\alpha_1}(y)=1}\subseteq{y\in\mathcal Y^n:\delta_{\alpha_2}(y)=1}$, observed significance level$p(y)=\inf{\alpha:\delta_\alpha(y)=1}$ - small
$p$ -value : provide evidence against$H_0$ - large
$p$ -value : provide no evidence against$H_0$
- small
- confidence interval : statistics
$L(Y)<U(Y)$ ,$100(1-\alpha)$ % confidence interval$[L(Y), U(Y)]$ if$P_\t[L(Y)\le\t\le U(Y)]\ge 1-\alpha$ - pivot quantity :
$g(Y,\t)$ if function both of$Y$ and$\t$ but its distribution does not depend on$\t$ - confidence region :
$R(Y)\subset\Theta$ ,$100(1-\alpha)$ % conficence region for$\t\in\Theta\subset\R^p$ if$P_\t[R(Y)\ni\t]\ge 1-\alpha$ - duality :
$R(Y)=[L_1(Y),U_1(Y)]\times\cdots\times[L_p(Y),U_p(Y)]$ , Bonferroni inequality implies$P_\t[R(Y)\ni\t]\ge 1-\sum_{i=1}^p P[\t_i\not\in[L_i(Y),U_i(Y)]]=1-\sum_{i=1}^p(1-q_i)$ , thus$\sum_{i=1}^p(1-q_i)=\alpha$
- duality :
- Bonferroni's procedure : test each hypothesis separately at level
$\alpha_t=\alpha/T$ , reject$H_0$ if at least one of${H_{0,t}}_{t=1}^T$ - Holm's procedure : reject
$H_{0,t}$ for small values of corresponding$p$ -value,$p_t$ , order$p$ -values from most to least significant$p_{(1)}\le\cdots\le p_{(T)}$ , starting from$t=1$ going up, reject all$H_{0,(t)}$ s.t.$p_{(t)}$ significant at level$\alpha/(T-t+1)$ , stop rejecting at first insignificant$p_{(t)}$ - Yields Sime's procedure : independence, suppose reject
$H_{0,j}$ for small values of$p_j$ , order$p$ -values from most to least significant$p_{(1)}\le\cdots\le p_{(T)}$ , if for some$j=1,\ldots,T$ ,$p$ -value$p_{(j)}$ significant at level$\frac{j\alpha}{T}$ thenreject global$H_0$ - Hochberg's procedure : inpdendence, localise Sime, suppose reject
$H_{0,j}$ for small values of$p_j$ , order$p$ -values from most to least significant$p_{(1)}\le\cdots\le p_{(T)}$ , starting from$j=T,T-1,\ldots$ , accept all$H_{0,(j)}$ s.t.$p_{(j)}$ insignificant at level$\alpha/(T-j+1)$ , stop accepting for first$j$ s.t.$p_{(j)}$ significant at level$\alpha/j$ and reject all remaining ordered hypotheses past that$j$ going down
- empirical distribution function EDF :
$Y_1,\ldots,Y_n\iid F$ ,$\hat F_n(y)=\frac{1}{n}\sum_{i=1}^n1{Y_i\le y}$ - Glivenko-Cantelli theorem : iid distributed according to
$F$ ,$sup_{x\in\R}\abs{\hat F_n(y)-F(x)}\overset{a.s.}\to 0$ - Dvoretzky-Kiefer-Wolfowitz inequality DKW : iid distributed according to
$F$ ,$P{sup_{y\in/R}\abs{\hat F_n(y)-F(y)}>\epsilon}\le 2e^{2n\epsilon^2}$ - estimate parameters : no model assumed, plug-in principle, use
$\nu(\hat F_n)$ as estimator of$\nu(F)$ - mean :
$\mu(F)=\int_{-\infty}^\infty y dF(y)$ get$\hat\t=\t(\hat F_n)=\int_{-\infty}^\infty yd\hat F_n(y)=\bar Y$ - variance :
$\sigma^2(F)=\int_{-\infty}^\infty(y-\mu(F))^2 dF(y)$ get$\sigma^2(\hat F_n)=\int_{-\infty}^\infty (y-\int_{-\infty}^\infty ud\hat F_n(u))^2d\hat F_n(y)=\frac{1}{n}\sum_{i=1}^n(Y_i-\bar Y)^2$ - median :
$m(F)=F^{-1}(1/2)$ ,$n$ odd get$\hat m=m(\hat F_n)=Y_{(\frac{n+1}{2})}$ - if parametric model assumable, MLE preferable
-
$F$ gaussian, mean estimator lead to same as MLE -
$F$ Laplace, MLE of mean is median, not mean
-
- mean :
- density estimation :
$\nu(F)=\frac{d}{dx} F(x)|_{x=x_0}$ , when it exists,$F\mapsto\nu(F)$ not well behaved in general- smoother estimate :
$\tilde F_n(x)=\int_{-\infty}^\infty \Phi(\frac{x-y}{h})d\hat F_n(y)=\frac{1}{n}\sum_{i=1}^n\Phi(\frac{x-Y_i}{h})$ with standard normal CDF and$h>0$ parameters - smoothed plug-in estimator :
$\hat f(x)=\frac{d}{dx}\tilde F_n(x)=\frac{1}{n}\sum_{i=1}^n\frac{1}{h}\varphi(\frac{x-Y_i}{h})$ for$\varphi(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$
- smoother estimate :
- kernel density estimator KDE :
$\hat f(x)=\frac{1}{nh}\sum_{i=1}^n K(\frac{x-Y_i}{h})$ - density kernel :
$K$ - bandwith :
$h$ - integrated mean squared error :
$IMSE(\hat f,f)=\int_\R E[(\hat f(x)-f(x))^2]dx$ - bias + variance
- density kernel :
- asymptotic risk for KDE : iid,
$IMSE(\hat f,f)=\frac{h^4}{4}\int_\R(f''(x))^2dx+\frac{1}{nh}\int_\R K^2(x)dx+o(h^4+\frac{1}{nh})$ as$h\to 0$ , bias proportional to curvature of$f$ - optimal choice of
$h$ depends on$f''$ unknown - risk of asynptotic order :
$n^{-4/5}$
- optimal choice of
- minimax optimal rates for KDE :
$F(m,r)$ subset of$m$ -differentiable in an$L^2$ ball of radius$r$ $\int_\R(f^{(m)}(x))^2 dx\le r^2$ ,$sup_{f\in F(m,r)}E[\int_\R(\hat f_n(x)-f(x))^2 dx]\ge Cn^{-\frac{2m}{2m+1}}$ - bandwith in practice
- pilot estimator : use parameter family, plug it into optimal bandwith expression
- least square cross-validation : construct unbiased estimator of
$IMSE$ , choose$h$ to minimise it
- leave-one-out cross validation :
$LSCV(h)=\int_\R\hat f_h(x)dx-\frac{2}{n}\sum_{i=1}^n\hat f_{h,-i}(Y_i)$ - Stone's theorem : bandwidth selected by cross-validation,
$\frac{\int_\R(\hat f_{h_{CV}}(x)-f(x))^2 dx}{\inf_{h> 0}\int_\R (\hat f_h(x)-f(x))^2 dx}\overset{a.s}\to 1$ provided true density bounded
- Stone's theorem : bandwidth selected by cross-validation,
- higher dimension KDE :
$\hat f(x)=\frac{1}{n\abs{H}^{1/2}}\sum_{i=1}^n K(H^{-1/2}(x-Y_i))$ with$H\ge 0$ $d\times d$ bandwith matrix and$K(x_1,\ldots,x_n)=\Pi_{j=1}^d\varphi (x_j)$ - curse of dimensionality :
$h\propto n^{-\frac{1}{4d}}$ , converge of$n^{-\frac{4}{4+d}}$
- curse of dimensionality :
- nonparametric : tradeoff flexibility and efficiency, interpretability
- regression :
$Y$ random whose law influenced by$x$ non-random,$Y_i\overset{\text{independent}}\sim \text{Distribution}{g(x_i)}$ where$g(x_i)=\t_i$ -
$x_i$ : continuous, discrete, categorical, vector, randomly, chosen by experimenter -
$g(\cdot)$ : linear, polynomial, exponential coefficient, cubic spline, neural net - distribution/function
$g$ $g(x_i^\top)=x_i^\top\beta$ $g$ nonparametric - gaussian linear regression smoothing
- exponential family GLM GAM
-
- matrix :
$\bs Q$ $n\times p$ real- column space : range,
$\mathcal M(Q)={y\in\R^n :\exists\beta\in\R^p, y=Q\beta }$ subspace of$\R^n$ , coordinate system- full rank
$p$ : coordinates$\beta$ corresponding to$y\in\mathcal M(Q)$ unique
- full rank
- null space : kernel,
$\ker(Q)={x\in\R^p : Qx=0}$ - orthogonal complement of
$\mathcal M(Q)$ :$\mathcal M^\bot(Q)={y\in\R^n: y^\top Q x=0, \forall x\in\R^p }={y\in\R^n: y^\top v=0, \forall v\in\mathcal M(Q)}$ - existence of solution :
$y$ element of$\mathcal M(Q)$ - uniqueness of solution : unique coordinate vector
$\beta$
- column space : range,
- spectral theorem :
$p\times p$ matrix$Q$ symmetric iff exists$p\times p$ orthogonal matrix$U$ and a diagonal matrix$\Lambda$ s.t.$Q=U\Lambda U^\top$ - eigenvectors :
$U=(u_1 \cdots u_p)$ s.t.$Qu_j=\lambda_j u_j$ (unique if eigenvalues distinct) - eigenvalues :
$\Lambda=diag(\lambda_1,\ldots,\lambda_p)$ real - rank of
$Q$ : number of non-zero eigenvalues
- eigenvectors :
- singular value decomposition : any
$n\times p$ real matrix can be factorised as $Q=U\Sigma V^\top$with$U$ $n\times n$ left unitary singular vectors,$\Sigma$ $n\times p$ diagonal non negative singular values,$V$ $p\times p$ right unitary singular vectors-
$U$ : eigenvectors of$QQ^\top$ , vectors corresponding to non-zero singular values form orthonormal basis$\mathcal Q$ -
$V$ : eigenvectors of$Q^\top Q$ , vectors corresponding to zero singular values form orthonormal basis$\mathcal M^\bot(Q)$ -
$\Sigma^2$ : eigenvalues of$QQ^\top$ and$Q^\top Q$
-
- idempotent matrix :
$Q^2=Q$ - orthogonal projection : onto subspace
$V$ , symmetric idempotent matrix$H$ s.t.$\mathcal (H)=V$ , unique- eigenvalues of
$H$ only$0$ or$1$ -
$I-H$ projection onto$V^\bot$ $Hy=y;\forall y\in V$ -
$x_1,\ldots,x_p$ linearly independent and$span(x_1,\ldots,x_p)=V$ implies$H=X(X^\top X)^{-1}X^\top$ with$X=(x_1 \cdots x_p)$ $\norm{x-Hx}\le\norm{x-v};\forall v\in V$ -
$V_1\subseteq V\subseteq\R^n$ with$H_1$ projection onto$V_1$ and$H$ onto$V$ ,$HH_1=H_1=H_1H$ -
$Q$ rank$k$ iff exist orthonormal vectors s.t.$Q=\sum_{j=1}^k v_iv_i^\top$
- eigenvalues of
- non-negative/positive matrix :
$p\times p$ real symmetric non-negative definite$\Omega\succeq 0$ or positive definite$\Omega\succ 0$ - quadratic form definition : iff
$x\top\Omega x\ge 0$ $\forall x\in\R^p$ or$\forall x\in\R^p\setminus{0}$ - spectral definition : iff eigenvalues non-negative or strictly positive
- non-negative definite iff
$\Omega$ covariance matrix of some random vector$Y$
- quadratic form definition : iff
- principal component analysis PCA : maximise
$var(v_1^\top Y)=v_1^\top\Omega v_1=\sum_{i=1}^d\lambda_i(u_i^\top v_1)^2$ over$\norm{v_1}=1$ , eivenvectors - optimal linear dimension reduction :
$Y$ mean-zero r.v. with covariance$\Omega$ ,$H$ project onto span of first$k$ eigenvectors of$\Omega$ ,$E\norm{Y-HY}^2\le E\norm{Y-QY}^2$ for any$Q$ of rank at most$k$ - deterministic version :
$x_1+\cdots+x_p=0$ ,$X=(x_1 \cdots x_p)$ , best approximating$k$ -hyperplane given by span of first$k$ eigenvectors of$XX^\top$ , projection$H$ holds$\sum_{i=1}^p\norm{x_i-Hx_i}^2\le\sum_{i=1}^p\norm{x_i-Qx_i}^2$
- deterministic version :
- multivariate gaussian distribution : iff
$\beta^\top Y$ univariate normal distribution,$Y\sim N(\mu,\Omega)$ - random vector independent : iff joint MGF product of marginal MGF
- MGF :
$M(u)=\exp(u^\top\mu+\frac{1}{2}u^\top\Omega u)$ - affine transformation :
$\t+BY\sim N(\t+B\mu,B\Omega B^\top)$ - density : assuming
$\Omega$ nonsingular$f(y)=\frac{1}{(2\pi)^{p/2}\abs{\Omega}^{1/2}}\exp(-\frac{1}{2}(y-\mu)^\top\Omega^{-1}(y-\mu))$ - isosurfaces : constant density isosurfaces ellipsoidal
- coordinate distributions : marginal of gaussian are gaussian (converse not true)
-
$\Omega$ diagonal : independent coordinates$Y_j$ -
$AY$ independent$BY$ :: iff$A\Omega B^\top=0$
-
$\chi^2$ distribution :$Z\sim N(0, I_{p\times p})$ $\norm{Z}^2=\sum_{j=1}^pZ_j^2\sim\chi^2_p$ -
$Z\sim N(0,I_{p\times p})$ and projection$H$ of rank$r\le p$ ,$Z^\top H Z\sim\chi_r^2$ -
$Y\sim N(\mu,\Omega)$ with$\Omega$ nonsingular,$(Y-\mu)^\top\Omega^{-1}(Y-\mu)\sim\chi_p^2$
-
-
$F$ distribution :$V\sim\chi_p^2$ independent$W\sim\chi_q^2$ ,$(V/p)/(W/q)\sim F_{p,q}$ - linear regression :
$Y_i\mid x_i\ind \text{Distribution}{g(x_i)}$ - gaussian :
$g(x)=\beta_0+\beta_1 x$ ,$Y\mid x_i\sim N(\beta_0+\beta_1 x_i,\sigma^2)\iff Y=\beta_0+\beta_1x+\epsilon_i$ with$\epsilon_i\ind N(0,\sigma^2)$ -
$x$ : explanatory variable, covariate -
$Y$ : response variable - linearity : in parameters, not explanatory variable
- vector :
$g(\bs x)=\beta_0+\bs\beta^\top\bs x$
- gaussian :
- least squares estimator :
$\hat\beta=\arg\max_\beta{-(Y-X\beta)^\top(Y-X\beta}=\arg\min\norm{Y-X\beta}^2=(X^\top X)^{-1}X^\top Y$ if$X$ rank$p$ - likelihood :
$Y_i=\beta_0+\beta_1x_{i1}+\cdots+\beta_qx_{iq}+\epsilon_i$ with$\epsilon_i\iid N(0,\sigma^2)$ or$Y=X\beta+\epsilon$ with$\epsilon\sim N(0,\sigma^2 I_{n\times n})$ - log-likehood maximised :
$(Y-X\beta)^\top(Y-X\beta)$ minimised - fitted values :
$\hat Y=X\hat\beta$ - biased variance :
$\hat\sigma^2=\frac{1}{n}(Y-X\hat\beta)^\top(Y-X\hat\beta)=\frac{1}{n}\norm{\hat Y-Y}^2$ - unbiased variance
$S^2=\frac{1}{n-p}(Y-X\hat\beta)^\top(Y-X\hat\beta)=\frac{1}{n-p}\norm{\hat Y-Y}^2$ - row geometry : exploratory analysis, observations, scatterplot, data space
- column geometry : theoretical analysis, variables
- hat matrix : projection of
$Y$ onto$\mathcal M(X)$ ,$H=X(X^\top X)^{-1}X^\top$ giving$\hat Y=X\hat\beta=HY$ - residuals :
$e=Y-X\hat\beta=(I-H)Y=(I-H)\epsilon$ ,$\sum e_i^2$ minimised over all$\beta$ - orthogonaliy :
$\hat Y^\top e=0$ - pythagoras :
$Y^\top Y=\hat Y^\top\hat Y+e^\top e=Y^\top HY+\epsilon^\top(I-H)\epsilon$
- likelihood :
- weighted least squares :
$Y_i\ind N(\beta_0+\beta_1x_{i1}+\cdots+\beta_qx_{iq},\frac{\sigma^2}{w_i})$ - transformation : $Y^=W^{1/2}Y$, $X^=W^{1/2}X$ with
$W=diag(w_1,\ldots,w_n)$ $\hat\beta=(X^\top W X)^{-1}X^\top W Y$ $S^2=\frac{1}{n-p}Y^\top[W-WX(X^\top W X)^{-1}X^\top W]Y$
- transformation : $Y^=W^{1/2}Y$, $X^=W^{1/2}X$ with
- sampling distribution LSE under gaussian model :
$Y_{n\times 1}=X_{n\times p}\beta_{p\times 1}+\epsilon_{n\times 1}$ with$\epsilon\sim N_n(0,\sigma^2 I_{n\times n})$ full rank$p$ <$n$ -
$HY$ sufficient for$\beta$ -
$\hat\beta\sim N_p{\beta,\sigma^2(X^\top X)^{-1}}$ , sufficient statistic for$\beta$ -
$\hat\beta$ independent$S^2$ , by idempotency $\frac{n-p}{\sigma^2}S^2\sim\chi_{n-p}^2$
-
- confidence intervals : linear combination
$c^\top\hat\beta\sim N_1(c^\top\beta,\sigma^2 c^\top(X^\top X)^{-1}c)=N_1(c^\top\beta,\sigma^2\delta)$ -
$Q=(c^\top\hat\beta -c^\top\beta)/(\sigma\sqrt{\delta})\sim N_1(0,1)$ with$Q^2\sim\chi_1^2$ independent of$S^2$ $\frac{n-p}{\sigma^2}S^2\sim \chi_{n-p}^2$ $\frac{Q^2 / 1}{\frac{n-p}{\sigma^2}S^2/(n-p)}=(\frac{c^\top\hat\beta -c^\top\beta}{\sqrt{S^2 c^\top(X^\top X)^{-1}c}})^2\sim F_{1,n-p}$ - for real
$W$ ,$W^2\sim F_{1,n-p}\iff W\sim t_{n-p}$ - 100$(1-\alpha)$% CI :
$c^\top\hat\beta\pm t_{n-p}(\alpha/2)\sqrt{S^2c^\top(X^\top X)^{-1}c}$ - $r$th coordinate :
$\beta_r=c_r^\top\beta$ with$c_r=1$ only at $r$th position,$\hat\beta_r\pm t_{\alpha/2}\sqrt{S^2v_{rr}}$ with$v_{r,s}$ $r$ ,$s$ element of$(X^\top X)^{-1}$
-
- prediction intervals : confidence bounds on potential response,
$Y_+=x_+^\top\hat\beta+\epsilon_+$ - base :
$\frac{x_+^\top\hat\beta-Y_+}{\sqrt{S^2{1+x_+^\top(X^\top X)^{-1}x_+}}}\sim t_{n-p}$ - CI :
$x_+^\top\hat\beta\pm t_{n-p}(\alpha/2)\sqrt{S^2{1+x_+^\top(X^\top X)^{-1}x_+}}$
- base :
- coefficient of determiniation
- measure of fit,
$R^2_0=\frac{\norm{\hat Y}^2}{\norm{Y}^2}$ , more natural - centred : empirical variance
$R^2=\frac{\sum_{i=1}^n \hat Y_i^2 - n\bar Y^2}{\sum_{i=1}^n Y_i^2-n\bar Y^2}=\frac{\norm{\hat Y}^2-\norm{\bar Y 1}^2}{\norm{Y}^2-\norm{\bar Y 1}^2}=\frac{\norm{(I-1(1^\top 1)^{-1})\hat Y}^2}{\norm{(I-1(1^\top 1)^{-1} 1)Y}^2}$ , statistically more relevant - adjusted
$R^2$ : take into account number of variable,$R^2_a=1-(1-R^2)\frac{n-1}{n-p}$ - centred adjusted :
$R_{0a}^2=1-(1-R_0^2)\frac{n}{n-p}$
- measure of fit,
- unbiasedness under moment assumptions : assume only
$E[\epsilon]=0$ ,$var[\epsilon]=\sigma^2 I$ instead of$\epsilon\sim N(0,\sigma^2 I)$ following remains true$E[\hat\beta]=\beta$ $cov[\hat\beta]=\sigma^2(X^\top X)^{-1}$ $E[S^2]=\sigma^2$
- Gauss-Markov :
$Y_{n\times 1}=X_{n\times p}\beta_{p\times 1}+\epsilon_{n\times 1}$ with$p<n$ ,$E[\epsilon]=0$ ,$cov[\epsilon]=\sigma^2 I$ , implies$\hat\beta =(X^\top X)^{-1}X^\top Y$ best linear unbiased estimator of$\beta$ , only for unbiased estimator - large sample distribution of
$\hat\beta$ :$Y_n=X_n\beta+\epsilon_n$ ,$X_n$ full rank$p$ ,$\max_{1\le i\le n}[x^\top_i(X_n^\top X_n)^{-1} x_i]\overset{n\to\infty}\to 0$ ,$E[\epsilon_n]=0$ ,$cov[\epsilon_n]=\sigma^2 I_{n\times n}$ implies$\hat\beta_n=(X_n^\top X_n)^{-1}X_n^\top Y_n$ satisfies$(X_n^\top X_n)^{1/2}(\hat\beta_n -\beta)\overset{d}\to N_p(0,\sigma^2 I_{p\times p})$ - assumptions : if one fail, gaussian linear regression inappropriate
- linearity :
$E[Y]$ is linear in$X$ - homoskedasticity : same spread,
$var[\epsilon_j]=\sigma^2$ - gaussian distribution : errors normally distributed
- independent errors
- isolated problemes : might affect or not model validity
- outliers
- influential observations
- cannot prove assumption : can only provide evidence in favour or against
- linearity :
- correct model :
$e\sim N(0,\sigma^2(I-H))$ , residuals ancillary - standardised (studentized) residuals :
$r_i=\frac{e_i}{s\sqrt{1-h_{ii}}}$ as residual correlated and unequal variances, reduce variance to$1$ - checking for linearity : no correlation should appear between explanatory variables and residuals, by linearity
$X^\top e=0$ - plot standardised residuals
$r$ against each covariate : no systematic patterns should appear - plot standardised residuals
$r$ against covariates left out of model : no systematic patterns should appear
- plot standardised residuals
- checking for homoskedasticity : plot
$r$ againt fitted values$\hat Y$ , random scatter should appear with approximately constant spread, check also for linearity - checking for normality : compare empirical vs theoretical quantiles
- theoretical
$\alpha$ -quantile :$F^-(\alpha)=\inf{t\in\R:F(t)\ge\alpha}$ - empirical
$\alpha$ -quantile :$\hat F^-(\alpha)=\inf{t\in\R :\hat F(t)\ge\alpha}=\inf{t\in\R :\frac{#{W_i\le t}}{n}\ge\alpha}$ - quantile plot : plot ordered empirical quantile against theoretical
$N(0,1)$ , expect points to fall close to 45° line (outliers, skewness, heavy tails easily revealed) - empirical quantiles of unstandardardised residuals : compare against line with slope of
$stdev(e)$ and intercept$0$
- theoretical
- check for independence : difficulte, clustering might suggest dependence (identify groups of related individual), when time-ordered look at correlation
$corr[r_t,r_{t+k}]$ or partial correlation$corr[r_t,r_{t+k}\mid r_{t+1},\ldots,r_{t+k-1}]$ - identifying influential observation : possibly affect
- outlier : faillaing far from surrounding, visually checked by regression scatter plot or residual plots
- leverage point
$h_{jj}$ : unusual values in$x$ -dimension,$var(Y_j-\hat Y_j)=var(e_j)=\sigma^2(1-h_{jj})$ -
$h_{jj}\approx 1$ implies model constrained so$\hat Y_j=x_j^\top\hat\beta\approx Y_j$ , need separate parameter entirely devoted to fit this observation - since
$trace(H)=\sum_{j=1}^n h_{jj}=p$ : cannot have low leverage for all cases, balanced design corresponds to$h_{jj}\approx p/n$ for all$j$ - rule of thumb :
$h_{jj}> 2p/n$ need further scrutiny, fitting again without$j$ and study
-
- cook's distance :
$C_j=\frac{1}{ps^2}(\hat Y-\hat Y_{-j})^\top(\hat Y-\hat Y_{-j})=\frac{r^2_j h_{jj}}{p(1-h_{jj})}$ , measure scaled distance between$\hat Y$ and$\hat Y_{-j}$ with$j$ dropped- rule of thumb :
$C_j > 8/(n-2p)$ - plot
$C_j$ against index and compare with$8/(n-2p)$ level
- rule of thumb :
- residual sums of squares :
$RSS(\hat\beta)=\norm{e}^2$ - comparing nested models :
$Y=X\beta+\epsilon=(X_1; X_2)(\beta_1; \beta_2)+\epsilon=X_1\beta_1+X_2\beta_2+\epsilon$ - pythagoras :
$\norm{Y-\hat Y_1}^2=RSS(\hat\beta_1)=\norm{e_1}^2=\norm{Y-\hat Y}^2+\norm{\hat Y-\hat Y_1}^2=RSS(\hat\beta)+(RSS(\hat\beta_1)-RSS(\hat\beta))$ - likelihood ratio test statistic :
$(RSS(\hat\beta_1)-RSS(\hat\beta))/RSS(\hat\beta)$
- pythagoras :
- sampling distribution for sums of squares
$e-e_1\bot e$ -
$\norm{e}^2=RSS(\hat\beta)$ and$\norm{e_1-e}^2=RSS(\hat\beta_1)-RSS(\hat\beta)$ independent $\norm{e}^2\sim\sigma^2\chi_{n-p}^2$ - under hypothesis
$H_0:\beta_2=0$ ,$\norm{e_1-e}^2\sim\sigma^2\chi_{p-q}^2$ - test statistic :
$T=\frac{(RSS(\hat\beta_1)-RSS(\hat\beta))/(p-q)}{RSS(\hat\beta)/(n-p)}\sim F_{p-q,n-p}$ - reject
$H_0$ if$p\le \alpha$ :$p=P_{H_0}[T(Y)\ge\tau]=P[F_{p-q,n-p}\ge\tau]$ for$T=\tau$
- test statistic :
- analysis of variance : groups of columns s.t.
$X=(1; X_1\cdots X_r)$ of size$1\times 1, 1\times q_1,\ldots, 1\times q_r$ ,$\beta=(\beta_0;\beta_1\cdots\beta_r)$ of size$n\times 1,n\times q_1,\ldots,n\times q_r$ ,- proceed as before
$\norm{e_0}^2=\norm{e_r}^2+\sum_{k=0}^{r-1}\norm{e_{k+1}-e_k}^2=RSS_r+\sum_{k=0}^{r-1}(RSS_k-RSS_{k+1})$ with$RSS_k$ for$\hat Y_k$ with$v_k$ degree of freedom -
$F$ -statistic :$F_k=\frac{(RSS_{k-1}-RSS_k) / (v_{k-1}-v_k)}{RSS_r/v_r}\sim F_{v_{k-1}-v_k,v_r}$ - anova table
- significance : order dependent unless orthogonal terms
- in pratice : most appropriate subset of columns, parsimony (sparingness, simplicity and least number of requisites and assumptions, frugality)
- proceed as before
- automatic model selection :
$X$ with$p$ variables,$2^p$ possibilities- true model : contains only columns for which
$\beta_r\not =0$ - correct model : true model plus extra columns
- wrong model : does not contain all columns of true model
- expected prediction error :
$f^*=\arg\min_{f\in 2^X}\frac{1}{n}E{\norm{Y_+-\hat Y(f)}^2}=\arg\min\Delta(f)$ with$\hat Y$ fitted values, new independent responses$Y_+$ same setup- train-test split : $\hat\Delta=(n')^{-1}\norm{Y'-X'\hat\beta^}^2$ with $X^$ train,
$X'$ test - leave-one-out cross validation :
$n\hat\Delta_{CV}=CV=\sum_{j=1}^n (Y_j-x_j^\top\hat\beta_{-j})^2=\sum_{j=1}^n\frac{(Y_j-x_j^\top\hat\beta)^2}{(1-h_{jj})^2}$ by perturbation theory - stable CV : generalised
$GCV=\sum_{j=1}^n\frac{(Y_i-x_j^\top\hat\beta)^2}{(1-trace(H)/n)^2}$ with$E[GCV]\approx n\Delta$
- train-test split : $\hat\Delta=(n')^{-1}\norm{Y'-X'\hat\beta^}^2$ with $X^$ train,
- Akaike information critera : minimise information distance, estimated by
$AIC=-2\hat l+2p$ ($\equiv n\log\hat\sigma^2+2p$ in linear model) with$\hat l$ maximised log likelihood for given model, tend to choose too complicated models- improved/corrected verson :
$AIC_c=AIC+\frac{2p(p+1)}{n-p-1}$ for regression - Bayes' information criterion :
$BIC=-2\hat l+p\log n$ model selection consistent - mallows :
$C_p=\frac{SS_p}{s^2}+2p-n$ with$SS_p$ is RSS for fitted model and$s^2$ estimate$\sigma^2$ under full model
- improved/corrected verson :
- true model : contains only columns for which
- automatic model building : little theoretical basis, lack objective function
- forward selection : start from model with constant only, add each term separately, if none significant stop otherwise update model with most significant new term
- backward selection : start from model with all terms, if all terms significant, stop otherwise update model dropping term with smallest
$F$ -statistic - stepwise : consider three options (add term, delete term, swap term), choose most significant option, if model unchanged stop otherwise repeat
- danger of big model : adding more variables enlarges
$\mathcal M(X)$ - multicollinearity : when
$p$ covariates concentrate around subspace of dimension$q<p$ (simplest case, correlated pairs of variables),$det[(X^\top X)^{-1}]\approx 0$ (almost not invertible)- causes : poor design or inherent relationships
- results : huge variances of estimator (flip signs for different data), individual coefficient insignificant (t-test
$p$ -values inflated) - diagnosing : scatterplots, correlation matrix
- variance inflation factors : $VIF_j=\frac{var(\hat\beta_j)\norm{X_j}^2}{\sigma^2}=\norm{X_j}^2[(X^\top X)^{-1}]{jj}=\frac{1}{1-R^2_j}$ with $R_j^2=\frac{\norm{X{-j}(X^\top_{-j}X_{-j} )^{-1} X^\top_{-j}X_{-j}}^2}{\norm{X_j}^2}$ coefficient of determination for regression of
$X_j$ on${X_1,\ldots,X_{j-1},X_{j+1},\ldots, X_p}$ , large value indicated linear dependence (rule of thumb$VIF_j>5$ or$10$ ) - spectral :
$X^\top X=U\Lambda U^\top$ with$\Lambda =diag{\lambda_1,\ldots,\lambda_p}$ ,$rank(X^\top X)=#{j:\lambda_j\not = 0}$ and$det(X^\top X)=\Pi_{j=1}^p\lambda_j$ - condition index :
$CI_j(X^\top X)=\sqrt{\lambda_{max}/\lambda_j}$ , small$\lambda_j$ mean almost reduced rank revealing effect of collinearity - condition number :
$CN(X^\top X)=\sqrt{\lambda_{max}/\lambda_{min}}$ , global instability, rule of thumb$CN>30$ moderate collinearity,$CN>100$ severe
- condition index :
- remedies : redesign, variable deletion, choose orthogonal basis for
$\mathcal M(X)$ (loose interpretability, prediction ok), introduce bias
- standardise design matrix :
$X=(1; W)$ ,$\beta=(\beta_0;\gamma)^\top$ - recentre/rescale :
$Z_j=\frac{1}{\sqrt{n} sd(W_j)}(W_j-1\bar W_j)$ -
$\beta_j$ interpretation : not mean impact on response per unit change of explanatory variable but per unit deviation of explanatory variable from its mean - estimate
$\beta_0$ and$\gamma$ by different regression :$Z=V\Lambda U^\top$ - least-square estimator :
$\hat\beta_0=\bar Y$ ,$\hat\gamma =(Z^\top Z)^{-1}Z^\top Y$ $\hat\gamma=\sum_{j=1}^q\frac{1}{\lambda_j}(V_j^\top Y)U_j$
- ridge regression : replace
$Z^\top Z$ by$Z^\top Z+\lambda I_{p\times p}$ ,$\hat\beta_0=\bar Y$ ,$\hat\gamma=(Z^\top Z+\lambda I)^{-1}Z^\top Y$ with ridge parameter$\lambda$ stabilizing, minimize$\norm{Y-\beta 1 - Z\gamma}^2_2+\lambda\norm{\gamma}_2^2$ (unique minimiser)-
$\hat\gamma=\sum_{j=1}^q\frac{\lambda_j}{\lambda_j^2+\lambda_j}(V_j^\top Y)U_j$ , reduce size of$1/\lambda_j$ $bias(\hat\gamma,\gamma)=-\lambda(Z^\top Z+\lambda I_{q\times q})^{-1}\gamma$ $cov(\hat\gamma)=\sigma^2(Z^\top Z+\lambda I)^{-1}Z^\top Z(Z^\top Z+\lambda I)^{-1}$
-
- least-square estimator :
- recentre/rescale :
- domination over least square :
$\tilde\gamma$ LST and$\hat\gamma_\lambda$ ridge,$E{(\tilde\gamma -\gamma)(\tilde \gamma-\gamma)^\top}-E{(\hat\gamma_\lambda-\gamma)(\hat\gamma_\lambda-\gamma)^\top}\succeq 0$ for$\lambda\in(0,2\sigma^2/\norm{\gamma}^2)$ , bit of bias can reduce variance- increase
$\lambda$ : decrease variance (collinearity) but increase bias - descreae
$\lambda$ : decrease bias but variance inflated if collinearity exists $trace(cov(\hat\gamma))=\sum_{j=1}^q\frac{\lambda_i}{\lambda_i^2+\lambda}\sigma^2$
- increase
- least absolute shrinkage and selection operator LASSO : minimising
$\norm{Y-\beta_0 1-Z\gamma}_2^2+\lambda\norm{\gamma}_1$ , non-linear in$Y$ , no explicit form (needs quadratic programming)- orthogonal design : model selection via thresholding
- unique solution :
$\hat\beta_0=\bar Y$ ,$\tilde\gamma_i=sng(\hat\gamma_i)(\abs{\hat\gamma_i}-\frac{\lambda}{2})$ for$i=1,\ldots,p-1$ with$\hat\gamma$ LSE - intuition :
$L_1$ norm induces sharp balls
-
$L_0$ norm : best subsets selection, $\norm{\gamma}0=\sum{j=1}^{p-1}\abs{\gamma_j}^0=#{j:\gamma_j\not = 0}$
-
generalised linear models GLM : regression with exponential family responses
- response vector :
$Y$ independent entries with joint law - natural parameter :
$\phi\in\Phi\subseteq\R^n$ varies a function of covariates$\phi=X_n\beta$ $f(y)=\Pi_{i=1}^n\exp{\phi_i y_i-\gamma(\phi_i)+S(y_i)}=\exp{\phi^\top y-\sum_{i=1}^n\gamma(\phi_i)+\sum_{i=1}^n S(y_i)}$ - main GLM of interest : Gaussian, Bernouilli, Poisson (
$\gamma$ invertible for all three) - sampling theory results
$\mu_i=E[Y_i]=\frac{\partial}{\partial\phi_i}\gamma(\phi_i)$ -
$var[Y_i]=\frac{\partial^2}{\partial\phi_i^2}\gamma(\phi_i)$ or if$\gamma$ invertible$var[Y_i]=\gamma''(\gamma'^{-1}(\mu_i))=V(\mu_i)$
- link function :
$\phi_i=g(\mu_i)=x_i^\top\beta$ - inverse link function :
$h=g^{-1}$ - natural link function :
$g=\gamma'^{-1}$ , focus on it from now on
- inverse link function :
- response vector :
-
loglikelihood :
$l_n(\beta)=\beta^\top X_n^\top Y-\sum_{i=1}^n\gamma(x_i^\top\beta)$ - score function
$\nabla_\beta l_n(\beta)=X_n^\top(Y-\mu)$ - covariance equaling information matrix :
$cov(\nabla_\beta l_n(\beta))=X_n^\top V(\beta) X_n=-\nabla_\beta^2 l_n(\beta)=\I_n(\beta)$ - adjusted response :
$\tilde Z=X_n^\top\tilde\beta+V^{-1}(\tilde\beta)(Y-\mu(\tilde\beta))$ with guess$\tilde\beta$ near$\hat\beta$ - weighted least squares estimate :
$\hat\beta\approx (X_n^\top V^{-1}(\tilde\beta) X_n)^{-1}X_n^\top V(\tilde \beta)\tilde Z$
- score function
-
iteratively reweighted least squares IRLS : equivalent to Newton-Raphson iteration, not guaranteed to converge
- initialize :
$x_i^\top\beta^{(0)}=\gamma'^{-1}(Y_i)$ and$Z_i^{(0)}=x_i^\top\beta^{(0)}+\frac{(Y_i-\gamma'(x_i^\top\beta^{(0)}))}{\gamma''(x_i^\top\beta^{(0)})}$ - update :
$\beta^{(j+1)}=(X_n^\top V^{-1}(\beta^{(j)} X_n)^{-1}X_n^\top V(\beta^{(j)})Z^{(j)})$
- initialize :
-
approximate sampling distribution of MLE : suppose started iteration at true
$\beta$ , stopped at$\hat\beta=(X_n^\top V^{-1}(\beta)X_n)^{-1}X_n^\top V(\beta) Z$ -
$Z_i=x_i^\top\beta+\frac{1}{\gamma''(x_i^\top\beta)}(Y_i-\gamma'(x_i^\top\beta))$ so$Z=X_n^\top\beta+V^{(-1)}(\beta)(Y-\mu(\beta))$ $\hat\beta=\beta+(X_n^\top V^{-1}(\beta)X_n)^{-1}X_n^\top(Y-\mu(\beta))$ -
$E[\hat\beta]=\beta$ and$cov(\hat\beta)=(X_n^\top V^{-1}(\beta) X_n)^{(-1)}=\I_n^{-1}(\beta)$ - asymptotic normality of MLE : as
$n\to\infty$ , provided it exists, MLE$\hat\beta_n$ of$\beta_0$ unique and satisfies$\I_n^{1/2}(\beta_0)(\hat\beta_n-\beta_0)\overset{d}{\to} N(0,I_{p\times p})$ for following-
$\beta\in B$ open convex subset of$\R^p$ -
$p\times p$ matrix$X_n^\top X_n$ full rank for all$n$ - information diverges :
$\lambda_{min}(\I_n(\beta))\overset{n\to\infty}\to\infty$ for smallest eigenvalue - any parameter
$\beta\in \R^p$ ,$\sup_{\alpha\in N_\delta(\beta)}\norm{\I_n^{-1/2}(\beta)\I_n^{1/2}(\alpha)-I_{p\times p}}\to0$ where$N_\delta(\beta)={\alpha\in\R^p:(\alpha-\beta)^\top\I_n(\beta)(\alpha-\beta)\le\delta}$ for$\delta >0$ - under canonical link :
$\I_n(\beta)=X_n^\top V(\beta)X_n$ - can be read :
$\hat\beta_n\overset{d}{\approx} N(\beta,\I_n^{-1}(\beta))$ - implies :
$(\hat\beta_n-\beta)^\top\I_n(\beta)(\hat\beta-\beta)\overset{d}\to\chi_p^2$
-
-
-
goodness of fit
- staturated model : #parameters = #observations
- staturated loglikelihood :
$l_n(\eta)=\eta^\top Y+\sum_{i=1}^n\gamma(\eta_i)$ (replace$x_i^\top\beta$ by$\eta_i$ ) - scaled deviance :
$D=2(l_n(\hat\eta)-l_n(\hat\beta))=2((\hat\eta-X_n\hat\beta)^\top Y+\sum_{i=1}^n(\gamma(\hat\eta_i)-\gamma(x_i^\top\hat\beta)))\ge 0$ , small good fit, sums of squares for gaussian - nested model :
$\hat\beta^A$ with$p$ free parameters,$\hat\beta^B$ nested for$q<p$ free parameters and$p-q$ fixed ones- likelihood ratio test :
$2(l_n(\hat\beta^A)-l_n(\hat\beta^B))=D_B-D_A\overset{d}\to\chi_{p-q}^2$ when B correct
- likelihood ratio test :
-
diagnostics : use sums of square and final iterate of IWLS
- leverage :
$h_{jj}$ $j$th diagonal element of$H=V^{1/2}(\hat\beta)X_n(X_n^\top V(\hat\beta)X_n)^{-1}X_n^\top V^{1/2}(\hat\beta)$ - cook statistic : change in deviance,
$2p^{-1}{l(\hat\beta)-l(\hat\beta_{-j})}$ , approximated by$C_j=\frac{h_{jj}}{p(1-h_{jj})}r^2_{P_j}$ with$r_{P_j}$ standardised Pearson residual - deviance residual :
$d_j=sgn(\hat\eta_j-x_i^\top\hat\beta_j)[2l_j(\hat\eta)-2 l_j(\hat\beta)]^{1/2}$ with$\sum_{j=1}^n d_j^2=D$ - peason residual :
$p_j=\frac{Y_i-\gamma'(x_i^\top\hat\beta)}{\sqrt{\gamma''(x_i^\top\hat\beta)}}=\frac{Y_i-\hat\mu_i}{\sqrt{V(\hat\mu_i)}}$ so$r_P=V^{-1/2}(\hat\beta)(Y-\mu(\hat\beta))$ - standardised versions :
$r_{Dj}=\frac{d_j}{(1-h_{jj})^{1/2}}$ and$r_{Pj}=\frac{p_j}{(1-h_{jj})^{1/2}}$
- leverage :
-
link function : choice of link is choice of error distribution
$F_\epsilon$ - distribution
$F_\epsilon(u)$ : link function$g(\pi)$ - logisitc
$e^u/(1+e^u)$ : logit$\log(\pi/(1-\pi))$ , symmetric, nice interpretation - normal
$\Phi(u)$ : probit$\Phi^{-1}(\pi)$ , symmetric - log weibull
$1-\exp(-\exp(u))$ : log-log$-\log(-\log(\pi))$ , asymmetric - gumbel
$\exp(-\exp(-u))$ : complementary log-log$\log(-\log(1-\pi))$ , asymmetric
- distribution
-
binomial GLM :
$R_j\mid x_j\ind\exp[m_j{\frac{r}{m_j}\log(\frac{\pi_j}{1-\pi_j})+\log(1-\pi_j)}+\log{m_j\choose r}]$ with$\sum_j m_j=N$ ,$m_j=\abs{M_j}$ and$g(\pi_i)=x_i^\top\beta$ ,$M$ 's called covariate classes -
logistic regression for binary data : bernouilli GLM with natural link
$g(\pi_i)=\log(\frac{\pi_i}{1-\pi_i})=x_i^\top\beta$ -
sparseness : covariate classes
${M_j}^n_{j=1}$ small ($n$ of order$N$ )- affect : interpretability of deviance
- rule of thumb : sparseness when
$m_k\le 5$ for several classes - solution : grouping data
-
jittered quantile residuals : for binary responses
- continuous :
$\hat U=F(Y\mid\hat\t)\overset{d}\approx Unif(0,1)$ if$\hat\t\approx\t$ ,$R_i=\Phi^{-1}(F(Y_i;\hat\t))\overset{d}\approx N(0,1)$ - discrete :
$\hat U_i^{(1)}\sim Unif(0,\hat\pi_i)$ ,$\hat U_i^{(2)}\sim Unif(\hat\pi_i, 1)$ ,$\Phi^{-1}(\hat U_i^{(1)}Y_i+\hat U_i^{(2)}(1-Y_i))\overset{d}\approx N(0,1)$
- continuous :
-
complete separation : logistic regression MLE does not exist if there exist hyperplane that perfectly separate,
$\sup_{\beta\R^p}L(\beta)=1$ , IWLS fail to converge, standard errors blow up- remedies : keep track of likelihood and parameters values while iterating
- regularised logistic regression : add penalty, standardized data,
$\sum_{i=1}^n Y_i(\gamma_0+x_i^\top\gamma)-\log(1+\exp(\gamma_0+x_i^\top\gamma))+\lambda\norm{\gamma}_q^2$
-
overlapping regime : full rank and intercept term, MLE exist uniquely iff covariate overlap
-
2x2 contingency tables : special case of Bernouilli/Binomial
- independent individuals,
$m_0$ and$m_1$ persons -
$\pi_0=\frac{e^\lambda}{1+e^\lambda}$ and$\pi_1=\frac{e^{\lambda+\psi}}{1+e^{\lambda+\psi}}$ - likelihood :
$\L(\psi,\lambda)\propto\frac{e^{r_0+r_1}\lambda+r_1\psi}{(1+e^{\lambda+\psi})^{m_1}(1+e^\lambda)^{m_0}}$ - does treatment affect success probability :
$\pi_1\overset{?}=\pi_0$ - log odds :
$\psi=\log\frac{\pi_1}{1-\pi_1}-\log\frac{\pi_0}{1-\pi_0}$ - simpson paradox : often inapproprate marginalisation
- independent individuals,
-
loglinear regression for count data : poisson GLM with natural link
$g(\mu_i)=\log\mu_i=x_i^\top\beta$ - flavors
- unconstrained responses
$Y_i\ind Poisson(\mu_i)$ - constrained responses
$(Y_1,\ldots,Y_d)$ subject to$\sum_{j=1}^d Y_j=m$ having multinomial distribution with probability$(\pi_1,\ldots,\pi_d)$ and denominator$m$ - constrained responses
$(Y_1,\ldots,Y_d)$ subject to$\sum_{j\in I_k} Y_j=m_k$ for disjoint partition sets having product multinomial
- unconstrained responses
- conditional distribution of
$(Y_1,\ldots, Y_n)$ given$\sum_{k=1}^d Y_i=m$ : with poisson iid with means$\mu_1,\ldots,\mu_d$ correspond to multinomial with denominator$m$ and probabilities$\pi_i=\mu_i/\sum_j\mu_j$ - count events : up to time
$T_i$ (offset term),$E[Y_i]=\mu_i=\lambda_iT_i$ , in this case$g(\mu_i)=\log\mu_i=x_i^\top\beta+\log T_i$ - more general contingency tables
- poisson : just collect data, arrange into table, poisson distribution foreach cell
- multinomial : keep collecting until
$m$ reached, multinomial distribution for table entries - product multinomial : fix row totals, treat row categories as independent, independent multinomial for tables entries of each row
- multinomial loglikelihood :
$l_{Mult}(\beta;y\mid \sum_c Y_{rc}=m_r)=\sum_{r,c} Y_{rc}\log\pi_{rc}=\sum_r(\sum_c Y_{rc}x_{rc}^\top\beta-m_r\log(\sum_c \exp(x_{rc}^\top\beta)))$ - unconstrained loglikelihood :
$l_{Poisson}(\beta,\gamma)=\sum_{rc} Y_{rc}\log\mu_{rc}-\mu_{rc}=\sum_r(M_r\gamma_r+\sum_c Y_{rc}x_{rc}^\top\beta-\exp^{\gamma_r}\sum_c \exp(x_{rc}^\top\beta))$ with$M_R=\sum_c Y_{rc}$ - alternative
$l_{Poisson}(\beta,\tau)=(\sum_r M_r\log\tau_r-\tau_r)+\sum_r(\sum_c Y_{rc}X_{rc}^\top\beta-M_r\log(\sum_c\exp(X_{rc}^\top\beta)))$ with$\tau_r=\sum_c\mu_{rc}=e^{\gamma_r}\sum_c e^{X_{rc}^\top\beta}=E[M_r]$ and$\gamma_r=\log\tau_r-\log(\sum_c\exp(x_{rc}^\top\beta))$
- alternative
-
$\beta$ : estimate using either loglinear or logistic model - Bayes :
$l_{Poisson}(\beta,\tau)=l_{Poisson}(\tau; m)+l_{Mult}(\beta;Y\mid M=m)$ , hence inference on$\beta$ using multinomial equvalent to poisson provided$\gamma_r$ included
- flavors
-
perfect separation : also affect multinomial regression, MLE for a perfect class fail to exist, can penalise or watch for parameters/likelihood convergence
- more flexible dependence :
$Y_i\mid x_i^\top\ind Dist[\phi_i]\to\cases{\phi_i=g(x_i^\top)\ g\in F\subset L^2(\R^p)}$ with$g:\R^p\to\R$ unknown - kernel smoothing :
$\hat g(x_0)=\frac{1}{\sum_{i=1}^n K(\frac{x_i-x_0}{\lambda})}\sum_{i=1}^n Y_i K(\frac{x_i-x_0}{\lambda})=\frac{1}{\sum_{i=1}^n w_i}\sum_{i=1}^n w_i Y_i$ with bandwidth$\lambda$ and$K$ kernel (standard gaussian $K(x)=\varphi(x)$) - natrual cubic spline : unique explicit solution to MLE
- MLE :
$\sum_{i=1}^n(Y_i-h(x_i))^2+\lambda\int_I h''(t)^2 dt=fit+roughness$ - piecewise polynomials of degree 3
- basis function :
$B_j$ as$s(x)=\sum_{j=1}^n\gamma_j B_j(x)$ - penalized likelihood :
$\min (Y-B\gamma)^\top(Y-B\gamma)+\lambda\gamma^\top\Omega\gamma$ with$B_{ij}=B_j(x_i)$ and$\Omega_{ij}=\int B_i''(x)B_j''(x)dx$ - smoothing matrix :
$S_\lambda=B(B^\top B+\lambda\Omega)^{-1}B^\top$ -
$trace(S_\lambda)$ : monotone decreasing,$trace(S_\lambda)\overset{\lambda\to\infty}\to 2$ ,$trace(S_\lambda)\overset{\lambda\to 0}\to n$
-
- equivalent degree of freedom of smoother :
$edf=trace(S_\lambda)$ , easy interpretation of roughness - bias/variance :
$E(\norm{g-\hat g}^2)=\frac{trace(S_\lambda S_\lambda^\top)}{n}\sigma^2+\frac{(g-S_\lambda g)^\top(g-S_\lambda g)}{n}$ - cross validation :
$CV(\lambda)=\sum_{j=1}^n(Y_j-\hat Y_j^-)^2=\sum_{j=1}^n(\frac{Y_j-\hat Y_j}{1-S_{jj}(\lambda)})^2$ with$S_{jj}(\lambda)$ $j,j$ element of$S_\lambda$ - generalised cross-validation :
$GCV=\sum_{j=1}^n(\frac{Y_j-\hat Y_j}{1-trace(S_\lambda)/n)})^2$
- MLE :
- orthogonal series : parametrising the problem
- Hilbert space :
$g(x)=\sum_{k\in\mathcal Z}\beta_k\psi_k(x)$ - Fourier series expansion :
$\beta_k=\frac{1}{2\pi}\int_{-\pi}^\pi g(x)e^{-ikx}dx$ - truncate series : reduce to linear regression,
$Y_i=\sum_{\abs{k}<\tau}\beta_k\psi_k(x_i)+\epsilon_i$ - Dirichlet kernel :
$D_\tau(u)=\sin((\tau+1/2)u)/\sin(u/2)$ - kernel smoothing :
$\hat g(x_0)=\frac{1}{c}\int_I y(x)K_\lambda(x-x_0)dx$
- Hilbert space :
- curse of dimensionality : neighbourhoods with fixed number of points become less local as dimension increase
- multidimensionality : fitted/interpreted variable-by-variable else curse of dimensionality too strong
- additive model :
$Y_i=\alpha_i+\sum_{k=1}^p f_k(x_{ik})+\epsilon_i$ with$f_k$ univariate smooth function - generalised additive model :
$Y_i\mid x_i^\top\ind \exp{\alpha_i y+y\sum_{k=1}^p f_k(x_{ik})-\gamma(\alpha_i+\sum_{k=1}^p f_k(x_{ik}))+S(y)}$ - backfitting algorithm : know how to fit each
$f_k$ individually well, take advantage- initialise :
$\alpha=\bar Y$ ,$f_k=f_k^0$ - cycle : get
$f_k$ by 1D smoothing of partial residual scatterplot,${(Y_i-\alpha-\sum_{m\not =k} f_m(x_{im}), x_{ik})}^n_{i=1}={e_{ik},x_{ik}}^n_{i=1}$
- initialise :
- projection pursuit regression : additively decompose
$g$ into smooth functions$h_k:\R\to\R$ , projection directions to be chosen for best fit, each$h_k$ is ridge function of$x_i^\top$ - likelihood :
$\min_{h_1\in C^2[0,1],\norm{\beta}=1}{\sum_{i=1}^n(Y_i-h_1(x_i^\top\beta))^2+\int_0^1(h_1''(t))^2dt}$ - smooth : given direction
$\beta$ , fitting$h_1(x_i^\top\beta)$ 1D - pursue : given
$h_1$ , have non-linear regression problem w.r.t.$\beta$
- likelihood :
- additive model :
- nonlinear sigmoidal approximation :
$\Psi:\R\to[0,1]$ strictly increasing distribution,$g:[0,1]^p\to\R$ continuous,$\sup_{x\in[0,1]^d}\abs{g(x)-\sum_{k=1}^K\alpha_k\Psi(t_k+x^\top\beta_k)}<\epsilon$ for$\epsilon >0$ and$K<\infty$ , neural network layer- derived covariates :
$w_k(x^\top)\approx\sum_{m=1}^{M_j}\delta_{m,j}\Psi(s_{m,j}+x^\top\gamma_{m,j})$ , learn transformation - nonlinear :
$Y_i=\sum_{k=1}^K\alpha_k\Psi(t_k+(w_i(x_1^\top),\ldots,w_i(x_n^\top))\beta_k)+\epsilon_i$
- derived covariates :