-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
171 lines (144 loc) · 5.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from losses import calc_loss
from models import build_model
from dataset import build_dataset
from metrics.epe import EPEMetric
from metrics.rate import RateMetric
from torchmetrics import MetricCollection
class TrainModel(pl.LightningModule):
def __init__(self, **kwargs):
super().__init__()
self.save_hyperparameters()
self.automatic_optimization = False
self.model = build_model(self.hparams)
self.max_disp = self.hparams.max_disp
self.max_disp_val = self.hparams.max_disp_val
if self.max_disp_val is None:
self.max_disp_val = self.max_disp
metric = MetricCollection(
{
"epe": EPEMetric(),
"rate_1": RateMetric(1.0),
"rate_3": RateMetric(3.0),
}
)
self.train_metric = metric.clone(prefix="train_")
self.val_metric = metric.clone(prefix="val_")
def forward(self, batch):
left = batch["left"] * 2 - 1
right = batch["right"] * 2 - 1
return self.model(left, right)
def training_step(self, batch, batch_idx):
scheduler = self.lr_schedulers()
optimizer = self.optimizers()
pred = self(batch)
loss_dict = calc_loss(
pred,
batch,
self.hparams,
)
loss = sum(loss_dict.values())
optimizer.zero_grad()
self.manual_backward(loss)
optimizer.step()
scheduler.step()
mask = (batch["disp"] < self.max_disp) & (batch["disp"] > 1e-3)
self.train_metric(pred["disp"], batch["disp"], mask)
self.log_dict(loss_dict, on_step=True)
def training_epoch_end(self, outputs):
self.log_dict(self.train_metric.compute(), prog_bar=False)
self.train_metric.reset()
def validation_step(self, batch, batch_idx):
pred = self(batch)
mask = (batch["disp"] < self.max_disp_val) & (batch["disp"] > 1e-3)
self.val_metric(pred["disp"], batch["disp"], mask)
def validation_epoch_end(self, outputs):
self.log_dict(self.val_metric.compute(), prog_bar=True)
self.val_metric.reset()
def configure_optimizers(self):
if self.hparams.optmizer == "Adam":
opt = torch.optim.Adam(
self.model.parameters(),
lr=self.hparams.lr,
)
elif self.hparams.optmizer == "SGD":
opt = torch.optim.SGD(
self.model.parameters(),
lr=self.hparams.lr,
momentum=0.9,
)
elif self.hparams.optmizer == "RMS":
opt = torch.optim.RMSprop(
self.model.parameters(),
lr=self.hparams.lr,
)
else:
raise NotImplementedError
if self.hparams.lr_decay_type == "Lambda":
def lr_step(step):
scale = 1.0
for s, v in zip(
self.hparams.lr_decay[::2], self.hparams.lr_decay[1::2]
):
if step > s:
scale = v
return scale
scheduler = torch.optim.lr_scheduler.LambdaLR(opt, lr_lambda=lr_step)
elif self.hparams.lr_decay_type == "Step":
if not self.hparams.lr_decay:
self.hparams.lr_decay = [1.0, 1.0]
scheduler = torch.optim.lr_scheduler.StepLR(
opt,
step_size=int(self.hparams.lr_decay[0]),
gamma=self.hparams.lr_decay[1],
)
else:
raise NotImplementedError
return [opt], [scheduler]
def train_dataloader(self):
dataset = build_dataset(self.hparams, training=True)
return torch.utils.data.DataLoader(
dataset,
batch_size=self.hparams.batch_size // self.trainer.num_gpus,
num_workers=self.hparams.num_workers,
shuffle=True,
pin_memory=True,
drop_last=True,
)
def val_dataloader(self):
dataset = build_dataset(self.hparams, training=False)
return torch.utils.data.DataLoader(
dataset,
batch_size=self.hparams.batch_size_val // self.trainer.num_gpus,
num_workers=self.hparams.num_workers_val,
pin_memory=True,
)
if __name__ == "__main__":
from opt import build_parser
from pytorch_lightning.plugins import DDPPlugin
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning import loggers as pl_loggers
from callback import LogColorDepthMapCallback
parser = build_parser()
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
pl.seed_everything(seed=args.seed)
model = TrainModel(**vars(args))
if args.pretrain is not None:
ckpt = torch.load(args.pretrain)
if "state_dict" in ckpt:
model.load_state_dict(ckpt["state_dict"])
else:
model.model.load_state_dict(ckpt)
trainer = pl.Trainer.from_argparse_args(
args,
logger=pl_loggers.TensorBoardLogger(args.log_dir, args.exp_name),
callbacks=[
LearningRateMonitor(logging_interval="step"),
LogColorDepthMapCallback(),
],
)
trainer.fit(model)