-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_kafka.py
143 lines (124 loc) · 4.74 KB
/
data_kafka.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from pykafka import KafkaClient
from pykafka.common import OffsetType
import pandas as pd
"""recom kafka"""
# def desc(value, partition_key):
# return (eval(value.decode("utf-8")), partition_key)
#
#
# client = KafkaClient(hosts="10.10.53.28:9092,10.10.32.192:9092,10.10.59.134:9092",
# zookeeper_hosts="10.10.53.28:2181")
#
# topic = client.topics["modelKafka".encode()]
#
# consumer = topic.get_simple_consumer(consumer_group="test",
# auto_offset_reset=OffsetType.EARLIEST,
# reset_offset_on_start=True,
# fetch_message_max_bytes=1024 * 1024 * 1024,
# auto_commit_enable=False,
# auto_commit_interval_ms=1,
# queued_max_messages=10000,
# deserializer=desc,
# )
#
# msg = consumer.consume()
#
# a = msg.value
# print(a["requestParams"])
# print(a["hisHomeWork"])
# print(pd.read_json(a["modelParams"]))
client = KafkaClient(hosts="10.19.127.87:9092,10.19.103.105:9092,10.19.176.30:9092", )
topic_log = client.topics["KFK-SUBTPC-app_dotting_log-ad_test".encode()]
topic_api = client.topics["susuan_api_log".encode()]
def parse_log(value, partition_key):
return (value.decode("utf-8").split("|"), partition_key)
def parse_api(value, partition_key):
value_split = value.decode("utf-8").split(" ")
t = value_split[0] + " " + value_split[1]
detail = {}
for nn in value_split[3].split("\t"):
key, value = nn.split("=")
detail[key] = value
return ([t, detail], partition_key)
consumer = topic_log.get_simple_consumer(consumer_group="ad_test",
auto_offset_reset=OffsetType.LATEST,
# auto_offset_reset=OffsetType.EARLIEST,
reset_offset_on_start=False,
fetch_message_max_bytes=1024 * 1024,
auto_commit_enable=False,
auto_commit_interval_ms=1000 * 30,
queued_max_messages=10000,
deserializer=parse_log,
)
# consumer = topic_api.get_simple_consumer(consumer_group="ad_test",
# auto_offset_reset=OffsetType.EARLIEST,
# reset_offset_on_start=True,
# fetch_message_max_bytes=1024 * 1024,
# auto_commit_enable=False,
# # auto_commit_interval_ms=100,
# queued_max_messages=10000,
# deserializer=parse_api,
# )
i = 0
cc = []
import MySQLdb
TABLE = "ad_log"
COLS = ["action_time", "user_id", "product_id",
"app_version", "app_source", "app_channel",
"page_code", "page_from", "device_type", "device_version",
"device_id", "ad_id", "event", "action_code"]
insert = "insert into {}({}) values({})".format(TABLE, ",".join(COLS),
",".join(["%s"] * len(COLS)))
conn = MySQLdb.connect(host='10.10.169.75',
user='root',
passwd='Knowbox512+_*',
db='richard',
port=3306, )
cursor = conn.cursor()
try:
for msg in consumer:
i += 1
tmp = msg.value
try:
int(tmp[1])
except:
continue
cc = tmp.pop(-2)
try:
cc = eval(cc)
if len(cc) != 2:
continue
for key in cc:
cc[key] = int(cc[key])
except:
continue
if cc["event"] not in (1, "1"):
continue
tmp.insert(-1, cc["adId"])
tmp.insert(-1, cc["event"])
try:
cursor.execute(insert, tmp)
conn.commit()
except Exception as e:
print(e)
continue
finally:
cursor.close()
conn.close()
# pd.DataFrame(cc).to_csv("kafka_data.csv",index=False)
#
# a = a.groupby(by=["1"], axis=0)
#
# cnt = 0
# for k, v in a:
# if k == "(null)":
# continue
# if len(v) > 1:
# v = v.sort_values(by=["0"])
# for oo in v["11"]:
# o = eval(oo)
# if o["event"] in (1, "1"):
# print(v[["1", "11", ]])
# cnt += 1
# if cnt >= 10:
# break