-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmobilenetv2.py
374 lines (325 loc) · 14.9 KB
/
mobilenetv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
'''MobileNetV2 in PyTorch.
Fetched from https://github.com/kuangliu/pytorch-cifar/blob/master/models/mobilenetv2.py
See the paper "Inverted Residuals and Linear Bottlenecks:
Mobile Networks for Classification, Detection and Segmentation" for more details.
'''
import math
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from thop import profile
from architectures_torch import ResBlock
class Block(nn.Module):
'''expand + depthwise + pointwise'''
def __init__(self, in_planes, out_planes, expansion, stride):
super(Block, self).__init__()
self.stride = stride
planes = expansion * in_planes
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, groups=planes, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(out_planes)
self.shortcut = nn.Sequential()
if stride == 1 and in_planes != out_planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_planes),
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out = out + self.shortcut(x) if self.stride==1 else out
return out
def init_weights(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight, gain=1.0)
if m.bias is not None:
m.bias.data.zero_()
if type(m) == nn.Conv2d or type(m) == nn.ConvTranspose2d:
nn.init.xavier_uniform_(m.weight, gain=1.0)
if m.bias is not None:
m.bias.data.zero_()
class MobileNet(nn.Module):
def __init__(self, feature, logger, num_client = 1, num_class = 10, initialize_different = False):
super(MobileNet, self).__init__()
# NOTE: change conv1 stride 2 -> 1 for CIFAR10
self.current_client = 0
self.local_list = []
for i in range(num_client):
if i == 0:
self.local_list.append(feature[0])
self.local_list[0].apply(init_weights)
else:
new_copy = copy.deepcopy(self.local_list[0])
self.local_list.append(new_copy.cuda())
if initialize_different:
self.local_list[i].apply(init_weights)
for name, params in self.local_list[-1].named_parameters():
print(name, 'of client', i, params.data[1][1])
break
# self.layers = self._make_layers(in_planes=32)
self.local = self.local_list[0]
self.cloud = feature[1]
self.logger = logger
self.initialize = True
self.classifier = nn.Linear(1280, num_class)
print("local:")
print(self.local)
print("cloud:")
print(self.cloud)
print("classifier:")
print(self.classifier)
def switch_model(self, client_id):
self.current_client = client_id
self.local = self.local_list[client_id]
def get_current_client(self):
return self.current_client
def get_smashed_data_size(self):
with torch.no_grad():
noise_input = torch.randn([1, 3, 32, 32])
try:
device = next(self.local.parameters()).device
noise_input = noise_input.to(device)
except:
pass
smashed_data = self.local(noise_input)
return smashed_data.size()
def get_MAC_param(self):
with torch.no_grad():
noise_input = torch.randn([1, 3, 32, 32])
device = next(self.local.parameters()).device
noise_input = noise_input.to(device)
client_macs, client_params = profile(self.local, inputs=(noise_input, ))
noise_smash = torch.randn(self.get_smashed_data_size())
device = next(self.cloud.parameters()).device
noise_smash = noise_smash.to(device)
server_macs, server_params = profile(self.cloud, inputs=(noise_smash, ))
return client_macs, client_params, server_macs, server_params
def get_inference_time(self, federated = False):
import time
with torch.no_grad():
noise_input = torch.randn([128, 3, 32, 32])
if not federated:
#CPU warm up
self.local.cpu()
self.local.eval()
smashed_data = self.local(noise_input) #CPU warm up
start_time = time.time()
for _ in range(500):
smashed_data = self.local(noise_input)
lapse_cpu = (time.time() - start_time)/500
else:
self.local.cpu()
self.cloud.cpu()
self.classifier.cpu()
self.local.eval()
self.cloud.eval()
self.classifier.eval()
smashed_data = self.local(noise_input) #CPU warm up
output = self.cloud(smashed_data)
output = output.view(output.size(0), -1)
output = self.classifier(output)
start_time = time.time()
for _ in range(500):
output = self.local(noise_input)
output = self.cloud(output)
output = output.view(output.size(0), -1)
output = self.classifier(output)
lapse_cpu = (time.time() - start_time)/500
if not federated:
self.local.cuda()
smashed_data = smashed_data.cuda()
self.cloud.eval()
#GPU-WARM-UP
for _ in range(100): #GPU warm up
output = self.cloud(smashed_data)
output = output.view(output.size(0), -1)
output = self.classifier(output)
start_time = time.time()
for _ in range(500):
output = self.cloud(smashed_data)
output = output.view(output.size(0), -1)
output = self.classifier(output)
lapse_gpu = (time.time() - start_time)/500
else:
self.local.cuda()
self.cloud.cuda()
self.classifier.cuda()
lapse_gpu = 0.0
del noise_input, output, smashed_data
return lapse_cpu, lapse_gpu
def get_train_time(self, federated = False):
import time
noise_input = torch.randn([128, 3, 32, 32])
noise_label = torch.randint(0, 10, [128, ])
self.local.cpu()
self.cloud.cpu()
self.classifier.cpu()
self.local.train()
self.cloud.train()
self.classifier.train()
criterion = torch.nn.CrossEntropyLoss()
'''Calculate client backward on CPU'''
smashed_data = self.local(noise_input) #CPU warm up
output = self.cloud(smashed_data)
output = output.view(output.size(0), -1)
output = self.classifier(output)
f_loss = criterion(output, noise_label)
f_loss.backward()
lapse_cpu_all = 0
for _ in range(500):
smashed_data = self.local(noise_input)
output = self.cloud(smashed_data)
output = output.view(output.size(0), -1)
output = self.classifier(output)
f_loss = criterion(output, noise_label)
start_time = time.time()
f_loss.backward()
#First time we calculate CPU overall train time.
lapse_cpu_all += (time.time() - start_time)
lapse_cpu_all = lapse_cpu_all / 500.
if not federated:
lapse_cpu_server = 0
for _ in range(500):
smashed_data = self.local(noise_input)
output = self.cloud(smashed_data.detach())
output = output.view(output.size(0), -1)
output = self.classifier(output)
f_loss = criterion(output, noise_label)
start_time = time.time()
f_loss.backward()
#First time we calculate CPU server train time by detaching smashed-data.
lapse_cpu_server += (time.time() - start_time)
lapse_cpu_server = lapse_cpu_server / 500.
lapse_cpu_client = lapse_cpu_all - lapse_cpu_server
else: # if federated
lapse_cpu_client = lapse_cpu_all
'''Calculate Server backward on GPU'''
self.local.cuda()
self.cloud.cuda()
self.classifier.cuda()
if not federated:
criterion.cuda()
noise_input = noise_input.cuda()
noise_label = noise_label.cuda()
#GPU warmup
for _ in range(100):
smashed_data = self.local(noise_input)
output = self.cloud(smashed_data.detach())
output = output.view(output.size(0), -1)
output = self.classifier(output)
f_loss = criterion(output, noise_label)
f_loss.backward()
lapse_gpu_server = 0
for _ in range(500):
smashed_data = self.local(noise_input)
output = self.cloud(smashed_data.detach())
output = output.view(output.size(0), -1)
output = self.classifier(output)
f_loss = criterion(output, noise_label)
start_time = time.time()
f_loss.backward()
#First time we calculate CPU server train time by detaching smashed-data.
lapse_gpu_server += (time.time() - start_time)
lapse_gpu_server = lapse_gpu_server / 500.
else:
lapse_gpu_server = 0.0
return lapse_cpu_client, lapse_gpu_server
def forward(self, x):
local_output = self.local(x)
x = self.cloud(local_output)
# NOTE: change pooling kernel_size 7 -> 4 for CIFAR10
x = F.avg_pool2d(x, 4)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
# (expansion, out_planes, num_blocks, stride)
cfg = [(1, 16, 1, 1),
(6, 24, 2, 1), # NOTE: change stride 2 -> 1 for CIFAR10
(6, 32, 3, 2),
(6, 64, 4, 2),
(6, 96, 3, 1),
(6, 160, 3, 2),
(6, 320, 1, 1)]
def make_layers(cutting_layer, cfg, in_planes, adds_bottleneck = False, bottleneck_option = "C8S1"):
local_layer_list = []
cloud_layer_list = []
current_layer = 0
in_channels = 3
if cutting_layer > current_layer:
local_layer_list.append(nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False))
local_layer_list.append(nn.BatchNorm2d(32))
in_channels = 32
else:
cloud_layer_list.append(nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False))
cloud_layer_list.append(nn.BatchNorm2d(32))
for expansion, out_planes, num_blocks, stride in cfg:
current_layer += 1
strides = [stride] + [1]*(num_blocks-1)
for stride in strides:
if cutting_layer > current_layer:
local_layer_list.append(Block(in_planes, out_planes, expansion, stride))
in_channels = out_planes
else:
cloud_layer_list.append(Block(in_planes, out_planes, expansion, stride))
in_planes = out_planes
current_layer += 1
if cutting_layer > current_layer:
local_layer_list.append(nn.Conv2d(320, 1280, kernel_size=1, stride=1, padding=0, bias=False))
local_layer_list.append(nn.BatchNorm2d(1280))
else:
cloud_layer_list.append(nn.Conv2d(320, 1280, kernel_size=1, stride=1, padding=0, bias=False))
cloud_layer_list.append(nn.BatchNorm2d(1280))
local = []
cloud = []
if adds_bottleneck: # to enable gooseneck, simply copy below to other architecture
print("original channel size of smashed-data is {}".format(in_channels))
try:
if "K" in bottleneck_option:
bn_kernel_size = int(bottleneck_option.split("C")[0].split("K")[1])
else:
bn_kernel_size = 3
bottleneck_channel_size = int(bottleneck_option.split("S")[0].split("C")[1])
if "S" in bottleneck_option:
bottleneck_stride = int(bottleneck_option.split("S")[1])
else:
bottleneck_stride = 1
except:
print("auto extract bottleneck option fail (format: CxSy, x = [1, max_channel], y = {1, 2}), set channel size to 8 and stride to 1")
bn_kernel_size = 3
bottleneck_channel_size = 8
bottleneck_stride = 1
# cleint-side bottleneck
if bottleneck_stride == 1:
local += [nn.Conv2d(in_channels, bottleneck_channel_size, kernel_size=bn_kernel_size, padding=bn_kernel_size//2, stride= 1)]
elif bottleneck_stride >= 2:
local += [nn.Conv2d(in_channels, bottleneck_channel_size, kernel_size=3, padding=1, stride= 2)]
for _ in range(int(np.log2(bottleneck_stride//2))):
local += [nn.ReLU()]
local += [nn.Conv2d(bottleneck_channel_size, bottleneck_channel_size, kernel_size=3, padding=1, stride= 2)]
local += [nn.ReLU()]
# server-side bottleneck
if bottleneck_stride == 1:
cloud += [nn.Conv2d(bottleneck_channel_size, in_channels, kernel_size=1, stride= 1)]
elif bottleneck_stride >= 2:
for _ in range(int(np.log2(bottleneck_stride//2))):
cloud += [nn.ConvTranspose2d(bottleneck_channel_size, bottleneck_channel_size, kernel_size=3, output_padding=1, padding=1, stride= 2)]
cloud += [nn.ReLU()]
cloud += [nn.ConvTranspose2d(bottleneck_channel_size, in_channels, kernel_size=3, output_padding=1, padding=1, stride= 2)]
cloud += [nn.ReLU()]
print("added bottleneck, new channel size of smashed-data is {}".format(bottleneck_channel_size))
local_layer_list += local
cloud_layer_list = cloud + cloud_layer_list
return nn.Sequential(*local_layer_list), nn.Sequential(*cloud_layer_list)
def MobileNetV2(cutting_layer, logger, num_client = 1, num_class = 10, initialize_different = False, adds_bottleneck = False, bottleneck_option = "C8S1"):
return MobileNet(make_layers(cutting_layer,cfg, in_planes=32, adds_bottleneck = adds_bottleneck, bottleneck_option = bottleneck_option), logger, num_client = num_client, num_class = num_class, initialize_different = initialize_different)
# def test():
# net = MobileNetV2(9, None)
# x = torch.randn(2,3,32,32)
# y = net(x)
# print(y.size())
# test()