forked from DaniloXiao/BEV-RoadSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
62 lines (51 loc) · 2.71 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
from options.test_options import TestOptions
from data import CreateDataLoader
from models import create_model
from util.util import confusion_matrix, getScores, save_images
import torch
import numpy as np
import cv2
#python test.py --dataroot datasets/kitti --dataset kitti --name kitti --no_label --epoch kitti
if __name__ == '__main__':
opt = TestOptions().parse()
opt.num_threads = 1
opt.batch_size = 1
opt.serial_batches = True # no shuffle
opt.isTrain = False
save_dir = os.path.join(opt.results_dir, opt.name, opt.phase + '_' + opt.epoch)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
model = create_model(opt, dataset.dataset)
model.setup(opt)
model.eval()
test_loss_iter = []
epoch_iter = 0
conf_mat = np.zeros((dataset.dataset.num_labels, dataset.dataset.num_labels), dtype=np.float)
with torch.no_grad():
for i, data in enumerate(dataset):
model.set_input(data)
model.forward()
model.get_loss()
epoch_iter += opt.batch_size
gt = model.label.cpu().int().numpy()
_, pred = torch.max(model.output.data.cpu(), 1)
pred = pred.float().detach().int().numpy()
save_images(save_dir, model.get_current_visuals(), model.get_image_names(), model.get_image_oriSize(), opt.prob_map)
# Resize images to the original size for evaluation
image_size = model.get_image_oriSize()
oriSize = (image_size[0].item(), image_size[1].item())
gt = np.expand_dims(cv2.resize(np.squeeze(gt, axis=0), oriSize, interpolation=cv2.INTER_NEAREST), axis=0)
pred = np.expand_dims(cv2.resize(np.squeeze(pred, axis=0), oriSize, interpolation=cv2.INTER_NEAREST), axis=0)
conf_mat += confusion_matrix(gt, pred, dataset.dataset.num_labels)
test_loss_iter.append(model.loss_segmentation)
print('Epoch {0:}, iters: {1:}/{2:}, loss: {3:.3f} '.format(opt.epoch,
epoch_iter,
len(dataset) * opt.batch_size,
test_loss_iter[-1]), end='\r')
avg_test_loss = torch.mean(torch.stack(test_loss_iter))
print ('Epoch {0:} test loss: {1:.3f} '.format(opt.epoch, avg_test_loss))
globalacc, pre, recall, F_score, iou = getScores(conf_mat)
print ('Epoch {0:} glob acc : {1:.3f}, pre : {2:.3f}, recall : {3:.3f}, F_score : {4:.3f}, IoU : {5:.3f}'.format(opt.epoch, globalacc, pre, recall, F_score, iou))