forked from beevik/etree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
path.go
580 lines (498 loc) · 15.6 KB
/
path.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
// Copyright 2015-2019 Brett Vickers.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package etree
import (
"strconv"
"strings"
)
/*
A Path is a string that represents a search path through an etree starting
from the document root or an arbitrary element. Paths are used with the
Element object's Find* methods to locate and return desired elements.
A Path consists of a series of slash-separated "selectors", each of which may
be modified by one or more bracket-enclosed "filters". Selectors are used to
traverse the etree from element to element, while filters are used to narrow
the list of candidate elements at each node.
Although etree Path strings are structurally and behaviorally similar to XPath
strings (https://www.w3.org/TR/1999/REC-xpath-19991116/), they have a more
limited set of selectors and filtering options.
The following selectors are supported by etree paths:
. Select the current element.
.. Select the parent of the current element.
* Select all child elements of the current element.
/ Select the root element when used at the start of a path.
// Select all descendants of the current element.
tag Select all child elements with a name matching the tag.
The following basic filters are supported:
[@attrib] Keep elements with an attribute named attrib.
[@attrib='val'] Keep elements with an attribute named attrib and value matching val.
[tag] Keep elements with a child element named tag.
[tag='val'] Keep elements with a child element named tag and text matching val.
[n] Keep the n-th element, where n is a numeric index starting from 1.
The following function-based filters are supported:
[text()] Keep elements with non-empty text.
[text()='val'] Keep elements whose text matches val.
[local-name()='val'] Keep elements whose un-prefixed tag matches val.
[name()='val'] Keep elements whose full tag exactly matches val.
[namespace-prefix()] Keep elements with non-empty namespace prefixes.
[namespace-prefix()='val'] Keep elements whose namespace prefix matches val.
[namespace-uri()] Keep elements with non-empty namespace URIs.
[namespace-uri()='val'] Keep elements whose namespace URI matches val.
Below are some examples of etree path strings.
Select the bookstore child element of the root element:
/bookstore
Beginning from the root element, select the title elements of all descendant
book elements having a 'category' attribute of 'WEB':
//book[@category='WEB']/title
Beginning from the current element, select the first descendant book element
with a title child element containing the text 'Great Expectations':
.//book[title='Great Expectations'][1]
Beginning from the current element, select all child elements of book elements
with an attribute 'language' set to 'english':
./book/*[@language='english']
Beginning from the current element, select all child elements of book elements
containing the text 'special':
./book/*[text()='special']
Beginning from the current element, select all descendant book elements whose
title child element has a 'language' attribute of 'french':
.//book/title[@language='french']/..
Beginning from the current element, select all descendant book elements
belonging to the http://www.w3.org/TR/html4/ namespace:
.//book[namespace-uri()='http://www.w3.org/TR/html4/']
*/
type Path struct {
segments []segment
}
// ErrPath is returned by path functions when an invalid etree path is provided.
type ErrPath string
// Error returns the string describing a path error.
func (err ErrPath) Error() string {
return "etree: " + string(err)
}
// CompilePath creates an optimized version of an XPath-like string that
// can be used to query elements in an element tree.
func CompilePath(path string) (Path, error) {
var comp compiler
segments := comp.parsePath(path)
if comp.err != ErrPath("") {
return Path{nil}, comp.err
}
return Path{segments}, nil
}
// MustCompilePath creates an optimized version of an XPath-like string that
// can be used to query elements in an element tree. Panics if an error
// occurs. Use this function to create Paths when you know the path is
// valid (i.e., if it's hard-coded).
func MustCompilePath(path string) Path {
p, err := CompilePath(path)
if err != nil {
panic(err)
}
return p
}
// A segment is a portion of a path between "/" characters.
// It contains one selector and zero or more [filters].
type segment struct {
sel selector
filters []filter
}
func (seg *segment) apply(e *Element, p *pather) {
seg.sel.apply(e, p)
for _, f := range seg.filters {
f.apply(p)
}
}
// A selector selects XML elements for consideration by the
// path traversal.
type selector interface {
apply(e *Element, p *pather)
}
// A filter pares down a list of candidate XML elements based
// on a path filter in [brackets].
type filter interface {
apply(p *pather)
}
// A pather is helper object that traverses an element tree using
// a Path object. It collects and deduplicates all elements matching
// the path query.
type pather struct {
queue fifo
results []*Element
inResults map[*Element]bool
candidates []*Element
scratch []*Element // used by filters
}
// A node represents an element and the remaining path segments that
// should be applied against it by the pather.
type node struct {
e *Element
segments []segment
}
func newPather() *pather {
return &pather{
results: make([]*Element, 0),
inResults: make(map[*Element]bool),
candidates: make([]*Element, 0),
scratch: make([]*Element, 0),
}
}
// traverse follows the path from the element e, collecting
// and then returning all elements that match the path's selectors
// and filters.
func (p *pather) traverse(e *Element, path Path) []*Element {
for p.queue.add(node{e, path.segments}); p.queue.len() > 0; {
p.eval(p.queue.remove().(node))
}
return p.results
}
// eval evalutes the current path node by applying the remaining
// path's selector rules against the node's element.
func (p *pather) eval(n node) {
p.candidates = p.candidates[0:0]
seg, remain := n.segments[0], n.segments[1:]
seg.apply(n.e, p)
if len(remain) == 0 {
for _, c := range p.candidates {
if in := p.inResults[c]; !in {
p.inResults[c] = true
p.results = append(p.results, c)
}
}
} else {
for _, c := range p.candidates {
p.queue.add(node{c, remain})
}
}
}
// A compiler generates a compiled path from a path string.
type compiler struct {
err ErrPath
}
// parsePath parses an XPath-like string describing a path
// through an element tree and returns a slice of segment
// descriptors.
func (c *compiler) parsePath(path string) []segment {
// If path ends with //, fix it
if strings.HasSuffix(path, "//") {
path += "*"
}
var segments []segment
// Check for an absolute path
if strings.HasPrefix(path, "/") {
segments = append(segments, segment{new(selectRoot), []filter{}})
path = path[1:]
}
// Split path into segments
for _, s := range splitPath(path) {
segments = append(segments, c.parseSegment(s))
if c.err != ErrPath("") {
break
}
}
return segments
}
func splitPath(path string) []string {
var pieces []string
start := 0
inquote := false
for i := 0; i+1 <= len(path); i++ {
if path[i] == '\'' {
inquote = !inquote
} else if path[i] == '/' && !inquote {
pieces = append(pieces, path[start:i])
start = i + 1
}
}
return append(pieces, path[start:])
}
// parseSegment parses a path segment between / characters.
func (c *compiler) parseSegment(path string) segment {
pieces := strings.Split(path, "[")
seg := segment{
sel: c.parseSelector(pieces[0]),
filters: []filter{},
}
for i := 1; i < len(pieces); i++ {
fpath := pieces[i]
if fpath[len(fpath)-1] != ']' {
c.err = ErrPath("path has invalid filter [brackets].")
break
}
seg.filters = append(seg.filters, c.parseFilter(fpath[:len(fpath)-1]))
}
return seg
}
// parseSelector parses a selector at the start of a path segment.
func (c *compiler) parseSelector(path string) selector {
switch path {
case ".":
return new(selectSelf)
case "..":
return new(selectParent)
case "*":
return new(selectChildren)
case "":
return new(selectDescendants)
default:
return newSelectChildrenByTag(path)
}
}
var fnTable = map[string]func(e *Element) string{
"local-name": (*Element).name,
"name": (*Element).FullTag,
"namespace-prefix": (*Element).namespacePrefix,
"namespace-uri": (*Element).NamespaceURI,
"text": (*Element).Text,
}
// parseFilter parses a path filter contained within [brackets].
func (c *compiler) parseFilter(path string) filter {
if len(path) == 0 {
c.err = ErrPath("path contains an empty filter expression.")
return nil
}
// Filter contains [@attr='val'], [fn()='val'], or [tag='val']?
eqindex := strings.Index(path, "='")
if eqindex >= 0 {
rindex := nextIndex(path, "'", eqindex+2)
if rindex != len(path)-1 {
c.err = ErrPath("path has mismatched filter quotes.")
return nil
}
key := path[:eqindex]
value := path[eqindex+2 : rindex]
switch {
case key[0] == '@':
return newFilterAttrVal(key[1:], value)
case strings.HasSuffix(key, "()"):
name := key[:len(key)-2]
if fn, ok := fnTable[name]; ok {
return newFilterFuncVal(fn, value)
}
c.err = ErrPath("path has unknown function " + name)
return nil
default:
return newFilterChildText(key, value)
}
}
// Filter contains [@attr], [N], [tag] or [fn()]
switch {
case path[0] == '@':
return newFilterAttr(path[1:])
case strings.HasSuffix(path, "()"):
name := path[:len(path)-2]
if fn, ok := fnTable[name]; ok {
return newFilterFunc(fn)
}
c.err = ErrPath("path has unknown function " + name)
return nil
case isInteger(path):
pos, _ := strconv.Atoi(path)
switch {
case pos > 0:
return newFilterPos(pos - 1)
default:
return newFilterPos(pos)
}
default:
return newFilterChild(path)
}
}
// selectSelf selects the current element into the candidate list.
type selectSelf struct{}
func (s *selectSelf) apply(e *Element, p *pather) {
p.candidates = append(p.candidates, e)
}
// selectRoot selects the element's root node.
type selectRoot struct{}
func (s *selectRoot) apply(e *Element, p *pather) {
root := e
for root.parent != nil {
root = root.parent
}
p.candidates = append(p.candidates, root)
}
// selectParent selects the element's parent into the candidate list.
type selectParent struct{}
func (s *selectParent) apply(e *Element, p *pather) {
if e.parent != nil {
p.candidates = append(p.candidates, e.parent)
}
}
// selectChildren selects the element's child elements into the
// candidate list.
type selectChildren struct{}
func (s *selectChildren) apply(e *Element, p *pather) {
for _, c := range e.Child {
if c, ok := c.(*Element); ok {
p.candidates = append(p.candidates, c)
}
}
}
// selectDescendants selects all descendant child elements
// of the element into the candidate list.
type selectDescendants struct{}
func (s *selectDescendants) apply(e *Element, p *pather) {
var queue fifo
for queue.add(e); queue.len() > 0; {
e := queue.remove().(*Element)
p.candidates = append(p.candidates, e)
for _, c := range e.Child {
if c, ok := c.(*Element); ok {
queue.add(c)
}
}
}
}
// selectChildrenByTag selects into the candidate list all child
// elements of the element having the specified tag.
type selectChildrenByTag struct {
space, tag string
}
func newSelectChildrenByTag(path string) *selectChildrenByTag {
s, l := spaceDecompose(path)
return &selectChildrenByTag{s, l}
}
func (s *selectChildrenByTag) apply(e *Element, p *pather) {
for _, c := range e.Child {
if c, ok := c.(*Element); ok && spaceMatch(s.space, c.Space) && s.tag == c.Tag {
p.candidates = append(p.candidates, c)
}
}
}
// filterPos filters the candidate list, keeping only the
// candidate at the specified index.
type filterPos struct {
index int
}
func newFilterPos(pos int) *filterPos {
return &filterPos{pos}
}
func (f *filterPos) apply(p *pather) {
if f.index >= 0 {
if f.index < len(p.candidates) {
p.scratch = append(p.scratch, p.candidates[f.index])
}
} else {
if -f.index <= len(p.candidates) {
p.scratch = append(p.scratch, p.candidates[len(p.candidates)+f.index])
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}
// filterAttr filters the candidate list for elements having
// the specified attribute.
type filterAttr struct {
space, key string
}
func newFilterAttr(str string) *filterAttr {
s, l := spaceDecompose(str)
return &filterAttr{s, l}
}
func (f *filterAttr) apply(p *pather) {
for _, c := range p.candidates {
for _, a := range c.Attr {
if spaceMatch(f.space, a.Space) && f.key == a.Key {
p.scratch = append(p.scratch, c)
break
}
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}
// filterAttrVal filters the candidate list for elements having
// the specified attribute with the specified value.
type filterAttrVal struct {
space, key, val string
}
func newFilterAttrVal(str, value string) *filterAttrVal {
s, l := spaceDecompose(str)
return &filterAttrVal{s, l, value}
}
func (f *filterAttrVal) apply(p *pather) {
for _, c := range p.candidates {
for _, a := range c.Attr {
if spaceMatch(f.space, a.Space) && f.key == a.Key && f.val == a.Value {
p.scratch = append(p.scratch, c)
break
}
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}
// filterFunc filters the candidate list for elements satisfying a custom
// boolean function.
type filterFunc struct {
fn func(e *Element) string
}
func newFilterFunc(fn func(e *Element) string) *filterFunc {
return &filterFunc{fn}
}
func (f *filterFunc) apply(p *pather) {
for _, c := range p.candidates {
if f.fn(c) != "" {
p.scratch = append(p.scratch, c)
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}
// filterFuncVal filters the candidate list for elements containing a value
// matching the result of a custom function.
type filterFuncVal struct {
fn func(e *Element) string
val string
}
func newFilterFuncVal(fn func(e *Element) string, value string) *filterFuncVal {
return &filterFuncVal{fn, value}
}
func (f *filterFuncVal) apply(p *pather) {
for _, c := range p.candidates {
if f.fn(c) == f.val {
p.scratch = append(p.scratch, c)
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}
// filterChild filters the candidate list for elements having
// a child element with the specified tag.
type filterChild struct {
space, tag string
}
func newFilterChild(str string) *filterChild {
s, l := spaceDecompose(str)
return &filterChild{s, l}
}
func (f *filterChild) apply(p *pather) {
for _, c := range p.candidates {
for _, cc := range c.Child {
if cc, ok := cc.(*Element); ok &&
spaceMatch(f.space, cc.Space) &&
f.tag == cc.Tag {
p.scratch = append(p.scratch, c)
}
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}
// filterChildText filters the candidate list for elements having
// a child element with the specified tag and text.
type filterChildText struct {
space, tag, text string
}
func newFilterChildText(str, text string) *filterChildText {
s, l := spaceDecompose(str)
return &filterChildText{s, l, text}
}
func (f *filterChildText) apply(p *pather) {
for _, c := range p.candidates {
for _, cc := range c.Child {
if cc, ok := cc.(*Element); ok &&
spaceMatch(f.space, cc.Space) &&
f.tag == cc.Tag &&
f.text == cc.Text() {
p.scratch = append(p.scratch, c)
}
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}