-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinference.py
160 lines (128 loc) · 5.3 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# -- coding: utf-8 --
import tensorflow as tf
import scipy.sparse as sp
import pandas as pd
import numpy as np
# output_node_names
def freeze_graph(path='model.ckpt', output='gcn/model.pb'):
saver = tf.train.import_meta_graph(path + '.meta', clear_devices=True)
graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def()
with tf.Session() as sess:
saver.restore(sess, path)
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess=sess,
input_graph_def=input_graph_def, # = sess.graph_def,
output_node_names=['output_y'])
with tf.gfile.GFile(output, 'wb') as fgraph:
fgraph.write(output_graph_def.SerializeToString())
# freeze_graph(path='gcn/model/model.ckpt')
def get_position(num_roads=49):
'''
:return: shape is [1, 49]
49 represents the numbers of road
'''
return np.array([[i for i in range(num_roads)]], dtype=np.int32)
def sparse_to_tuple(sparse_mx):
"""Convert sparse matrix to tuple representation."""
def to_tuple(mx):
if not sp.isspmatrix_coo(mx):
mx = mx.tocoo()
coords = np.vstack((mx.row, mx.col)).transpose()
values = mx.data
shape = mx.shape
return coords, values, shape
if isinstance(sparse_mx, list):
for i in range(len(sparse_mx)):
sparse_mx[i] = to_tuple(sparse_mx[i])
else:
sparse_mx = to_tuple(sparse_mx)
return sparse_mx
def normalize_adj(adj):
'''
:param adj: Symmetrically normalize adjacency matrix
:return:
'''
adj = sp.coo_matrix(adj) # 转化为稀疏矩阵表示的形式
rowsum = np.array(adj.sum(1)) # 原连接矩阵每一行的元素和
d_inv_sqrt = np.power(rowsum, -0.5).flatten() #先根号,再求倒数,然后flatten返回一个折叠成一维的数组
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0. #
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
def preprocess_adj(adj):
'''
:param adj: A=A+E, and then to normalize the the adj matrix,
preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation.
example [[1,0,0],[0,1,0],[0,0,1]]
:return:
'''
adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0]))
print('adj_normalized shape is : ', adj_normalized.shape)
return sparse_to_tuple(adj_normalized)
def adjecent(adj_file='data/training_data/adjacent.csv', num_roads=49):
'''
:return: adj matrix
'''
data = pd.read_csv(filepath_or_buffer=adj_file)
adj = np.zeros(shape=[num_roads, num_roads])
for line in data[['src_FID', 'nbr_FID']].values:
adj[line[0]][line[1]] = 1
return adj
def recover():
return
def prediction(features=None, days=None, hours=None, num_roads=49):
'''
input_features shape is [batch size * input time size, num roads, features],
for example,(1, 49,1), dtype: float64.
input_position shape is [1, num roads],
for example,(1, 49), dtype: int32.
input_day shape is [input time size + prediction time size, num roads],
for example,(7, 49), dtype: int32. 6 + 1 = 7
input_hour shape is [input time size + prediction time size, num roads],
for example,(7, 49), dtype: int32. 6 + 1 = 7
input_indices shape is [None, 2], dtype : int 32.
input_values shape is [None], dtype: float64.
input_dense_shape shape is (num roads, num roads)
:return: pred shape is [batch size, num roads, prediction time size],
example (1, 49, 1), dtype: float.
'''
with tf.gfile.GFile('gcn/model.pb', 'rb') as fgraph:
graph_def = tf.GraphDef()
graph_def.ParseFromString(fgraph.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name='')
input_postion = graph.get_tensor_by_name('input_position:0')
input_day = graph.get_tensor_by_name('input_day:0')
input_hour = graph.get_tensor_by_name('input_hour:0')
input_indices = graph.get_tensor_by_name('input_indices:0')
input_values = graph.get_tensor_by_name('input_values:0')
input_dense_shape = graph.get_tensor_by_name('input_dense_shape:0')
input_features = graph.get_tensor_by_name('input_features:0')
pred = graph.get_tensor_by_name('output_y:0')
position=get_position(num_roads)
adj=adjecent()
adj=preprocess_adj(adj)
# print(support)
print(position.shape, position.dtype)
print(days.shape,days.dtype)
print(hours.shape,hours.dtype)
print(features.shape,features.dtype)
print(adj[0].shape, adj[0].dtype)
print(adj[1].shape, adj[1].dtype)
print(adj[2])
sess = tf.Session(graph=graph)
feed={input_postion:position,
input_day:days,
input_hour:hours,
input_features:features,
input_indices:adj[0],
input_values:adj[1],
input_dense_shape:adj[2]}
scores = sess.run(pred, feed_dict=feed)
return scores
'''input example'''
features=np.random.random([6,49,1])
days=np.random.randint(low=1,high=20,size=[7, 49],dtype=np.int32)
hours = np.random.randint(low=0, high=20, size=[7, 49],dtype=np.int32)
pres=prediction(features=features,days=days,hours=hours, num_roads=49)
print(pres)