-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_dynamic_inference.py
345 lines (298 loc) · 16.3 KB
/
run_dynamic_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# -- coding: utf-8 --
'''
the shape of sparsetensor is a tuuple, like this
(array([[ 0, 297],
[ 0, 296],
[ 0, 295],
...,
[161, 2],
[161, 1],
[161, 0]], dtype=int32), array([0.00323625, 0.00485437, 0.00323625, ..., 0.00646204, 0.00161551,
0.00161551], dtype=float32), (162, 300))
axis=0: is nonzero values, x-axis represents Row, y-axis represents Column.
axis=1: corresponding the nonzero value.
axis=2: represents the sparse matrix shape.
'''
from __future__ import division
from __future__ import print_function
from models.utils import *
from models.models import GCN
from models.hyparameter import parameter
from models.embedding import embedding
from models.encoder import Encoder_ST
from models.decoder import Decoder_ST
from models.bridge import BridgeTransformer
from models.bridge_lstm import LstmClass
from models.inference import InferenceClass
from models.data_next import DataClass
from models.bridge import transformAttention
import pandas as pd
import tensorflow as tf
import numpy as np
import os
import argparse
import datetime
tf.reset_default_graph()
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
logs_path = "board"
tf.random.set_random_seed(seed=22)
np.random.seed(22)
#
# os.environ['CUDA_VISIBLE_DEVICES']='3'
#
# from tensorflow.compat.v1 import ConfigProto
# from tensorflow.compat.v1 import InteractiveSession
#
# config = ConfigProto()
# config.gpu_options.allow_growth = True
# session = InteractiveSession(config=config)
class Model(object):
def __init__(self, para):
self.para = para
self.adj = preprocess_adj(self.adjecent())
# define gcn model
if self.para.model_name == 'gcn_cheby':
self.support = chebyshev_polynomials(self.adj, self.para.max_degree)
self.num_supports = 1 + self.para.max_degree
self.model_func = GCN
else:
self.support = [self.adj]
self.num_supports = 1
self.model_func = GCN
# define placeholders
self.placeholders = {
'position': tf.placeholder(tf.int32, shape=(1, self.para.site_num), name='input_position'),
'day': tf.placeholder(tf.int32, shape=(None, self.para.site_num), name='input_day'),
'hour': tf.placeholder(tf.int32, shape=(None, self.para.site_num), name='input_hour'),
'minute': tf.placeholder(tf.int32, shape=(None, self.para.site_num), name='input_minute'),
'indices_i': tf.placeholder(dtype=tf.int64, shape=[None, None], name='input_indices'),
'values_i': tf.placeholder(dtype=tf.float32, shape=[None], name='input_values'),
'dense_shape_i': tf.placeholder(dtype=tf.int64, shape=[None], name='input_dense_shape'),
'features_s': tf.placeholder(tf.float32, shape=[None, self.para.input_length, self.para.site_num, self.para.features], name='input_s'),
'labels_s': tf.placeholder(tf.float32, shape=[None, self.para.site_num, self.para.output_length], name='labels_s'),
'features_p': tf.placeholder(tf.float32, shape=[None, self.para.input_length, self.para.features_p], name='input_p'),
'labels_p': tf.placeholder(tf.float32, shape=[None, self.para.output_length], name='labels_p'),
'dropout': tf.placeholder_with_default(0., shape=(), name='input_dropout'),
'num_features_nonzero': tf.placeholder(tf.int32, name='input_zero') # helper variable for sparse dropout
}
self.supports = [tf.SparseTensor(indices=self.placeholders['indices_i'],
values=self.placeholders['values_i'],
dense_shape=self.placeholders['dense_shape_i']) for _ in range(self.num_supports)]
self.model()
def adjecent(self):
'''
:return: adj matrix
'''
data = pd.read_csv(filepath_or_buffer=self.para.file_adj)
adj = np.zeros(shape=[self.para.site_num, self.para.site_num])
for line in data[['src_FID', 'nbr_FID']].values:
adj[line[0]][line[1]] = 1
return adj
def model(self):
'''
:param batch_size: 64
:param encoder_layer:
:param decoder_layer:
:param encoder_nodes:
:param prediction_size:
:param is_training: True
:return:
'''
p_emd = embedding(self.placeholders['position'], vocab_size=self.para.site_num, num_units=self.para.emb_size,scale=False, scope="position_embed")
p_emd = tf.reshape(p_emd, shape=[1, self.para.site_num, self.para.emb_size])
self.p_emd = tf.tile(tf.expand_dims(p_emd, axis=0), [self.para.batch_size, self.para.input_length+self.para.output_length, 1, 1])
d_emb = embedding(self.placeholders['day'], vocab_size=32, num_units=self.para.emb_size,scale=False, scope="day_embed")
self.d_emd = tf.reshape(d_emb, shape=[self.para.batch_size, self.para.input_length + self.para.output_length,
self.para.site_num, self.para.emb_size])
h_emb = embedding(self.placeholders['hour'], vocab_size=24, num_units=self.para.emb_size,scale=False, scope="hour_embed")
self.h_emd = tf.reshape(h_emb, shape=[self.para.batch_size, self.para.input_length + self.para.output_length,
self.para.site_num, self.para.emb_size])
m_emb = embedding(self.placeholders['minute'], vocab_size=4, num_units=self.para.emb_size,scale=False, scope="minute_embed")
self.m_emd = tf.reshape(m_emb, shape=[self.para.batch_size, self.para.input_length + self.para.output_length,
self.para.site_num, self.para.emb_size])
# encoder
print('#................................in the encoder step....................................#')
with tf.variable_scope(name_or_scope='encoder'):
'''
return, the gcn output --- for example, inputs.shape is : (32, 3, 162, 32)
axis=0: bath size
axis=1: input data time size
axis=2: numbers of the nodes
axis=3: output feature size
'''
timestamp = [self.h_emd, self.m_emd]
position = self.p_emd
# [-1, input_length, site num, emb_size]
if self.para.model_name == 'STGIN_1':
speed = FC(self.placeholders['features_s'], units=[self.para.emb_size, self.para.emb_size], activations=[tf.nn.relu, None],
bn=False, bn_decay=0.99, is_training=self.para.is_training)
else:
speed = tf.transpose(self.placeholders['features_s'],perm=[0, 2, 1, 3])
speed = tf.reshape(speed, [-1, self.para.input_length, self.para.features])
speed3 = tf.layers.conv1d(inputs=speed,
filters=self.para.emb_size,
kernel_size=3,
padding='SAME',
kernel_initializer=tf.truncated_normal_initializer(),
name='conv_1')
speed2 = tf.layers.conv1d(inputs=tf.reverse(speed,axis=[1]),
filters=self.para.emb_size,
kernel_size=3,
padding='SAME',
kernel_initializer=tf.truncated_normal_initializer(),
name='conv_2')
speed1 = tf.layers.conv1d(inputs=speed,
filters=self.para.emb_size,
kernel_size=1,
padding='SAME',
kernel_initializer=tf.truncated_normal_initializer(),
name='conv_3')
# speed2 = tf.nn.sigmoid(speed2)
speed2 = tf.reverse(speed2,axis=[1])
speed2 = tf.multiply(speed2, tf.nn.sigmoid(speed2))
speed3 = tf.multiply(speed3, tf.nn.sigmoid(speed3))
speed = tf.add_n([speed1, speed2, speed3])
speed = tf.reshape(speed, [-1, self.para.site_num, self.para.input_length, self.para.emb_size])
speed = tf.transpose(speed, perm=[0, 2, 1, 3])
# [-1, input_length, emb_size]
STE = STEmbedding(position, timestamp, 0, self.para.emb_size, False, 0.99, self.para.is_training)
encoder = Encoder_ST(hp=self.para, placeholders=self.placeholders, model_func=self.model_func)
encoder_outs = encoder.encoder_spatio_temporal(speed = speed,
STE = STE[:, :self.para.input_length,:,:],
supports=self.supports)
print('encoder encoder_outs shape is : ', encoder_outs.shape)
# inference
print('#................................in the inference step...................................#')
with tf.variable_scope(name_or_scope='inference'):
inference=InferenceClass(para=self.para)
self.pres_s= inference.dynamic_inference(features=encoder_outs, STE=STE[:, self.para.input_length:,:,:])
print('pres_s shape is : ', self.pres_s.shape)
self.loss1 = tf.reduce_mean(tf.sqrt(tf.reduce_mean(tf.square(self.pres_s + 1e-10 - self.placeholders['labels_s']), axis=0)))
self.train_op_1 = tf.train.AdamOptimizer(self.para.learning_rate).minimize(self.loss1)
print('#...............................in the training step.....................................#')
def test(self):
'''
:param batch_size: usually use 1
:param encoder_layer:
:param decoder_layer:
:param encoder_nodes:
:param prediction_size:
:param is_training: False
:return:
'''
model_file = tf.train.latest_checkpoint('weights/')
self.saver.restore(self.sess, model_file)
def initialize_session(self):
self.sess = tf.Session()
self.saver = tf.train.Saver(var_list=tf.trainable_variables())
def re_current(self, a, max, min):
return [num * (max - min) + min for num in a]
def run_epoch(self):
'''
from now on,the model begin to training, until the epoch to 100
'''
max_mae = 100
self.sess.run(tf.global_variables_initializer())
iterate = DataClass(self.para)
train_next = iterate.next_batch(batch_size=self.para.batch_size, epoch=self.para.epoch, is_training=True)
for i in range(int((iterate.length // self.para.site_num * self.para.divide_ratio - (
self.para.input_length + self.para.output_length)) // self.para.step)
* self.para.epoch // self.para.batch_size):
x_s, day, hour, minute, label_s, x_p, label_p = self.sess.run(train_next)
x_s = np.reshape(x_s, [-1, self.para.input_length, self.para.site_num, self.para.features])
day = np.reshape(day, [-1, self.para.site_num])
hour = np.reshape(hour, [-1, self.para.site_num])
minute = np.reshape(minute, [-1, self.para.site_num])
feed_dict = construct_feed_dict(x_s, self.adj, label_s, day, hour, minute, x_p, label_p, self.placeholders)
feed_dict.update({self.placeholders['dropout']: self.para.dropout})
loss_1, _ = self.sess.run((self.loss1, self.train_op_1), feed_dict=feed_dict)
print("after %d steps,the training average loss value is : %.6f" % (i, loss_1))
# validate processing
if i % 100 == 0:
mae = self.evaluate()
if max_mae > mae:
print("the validate average loss value is : %.6f" % (mae))
max_mae = mae
self.saver.save(self.sess, save_path=self.para.save_path + 'model.ckpt')
def evaluate(self):
'''
:param para:
:param pre_model:
:return:
'''
label_s_list, pre_s_list = list(), list()
# with tf.Session() as sess:
model_file = tf.train.latest_checkpoint(self.para.save_path)
if not self.para.is_training:
print('the model weights has been loaded:')
self.saver.restore(self.sess, model_file)
# self.saver.save(self.sess, save_path='gcn/model/' + 'model.ckpt')
iterate_test = DataClass(hp=self.para)
test_next = iterate_test.next_batch(batch_size=self.para.batch_size, epoch=1, is_training=False)
max_s, min_s = iterate_test.max_s['speed'], iterate_test.min_s['speed']
# '''
for i in range(int((iterate_test.length // self.para.site_num
- iterate_test.length // self.para.site_num * iterate_test.divide_ratio
- (self.para.input_length + self.para.output_length)) // iterate_test.output_length) // self.para.batch_size):
x_s, day, hour, minute, label_s, x_p, label_p = self.sess.run(test_next)
x_s = np.reshape(x_s, [-1, self.para.input_length, self.para.site_num, self.para.features])
day = np.reshape(day, [-1, self.para.site_num])
hour = np.reshape(hour, [-1, self.para.site_num])
minute = np.reshape(minute, [-1, self.para.site_num])
feed_dict = construct_feed_dict(x_s, self.adj, label_s, day, hour, minute, x_p, label_p, self.placeholders)
feed_dict.update({self.placeholders['dropout']: 0.0})
if i == 0: begin_time = datetime.datetime.now()
pre_s= self.sess.run((self.pres_s), feed_dict=feed_dict)
if i == 0:
end_t = datetime.datetime.now()
total_t = end_t - begin_time
print("Total running times is : %f" % total_t.total_seconds())
label_s_list.append(label_s)
pre_s_list.append(pre_s)
label_s_list = np.reshape(np.array(label_s_list, dtype=np.float32),
[-1, self.para.site_num, self.para.output_length]).transpose([1, 0, 2])
pre_s_list = np.reshape(np.array(pre_s_list, dtype=np.float32),
[-1, self.para.site_num, self.para.output_length]).transpose([1, 0, 2])
if self.para.normalize:
label_s_list = np.array(
[self.re_current(np.reshape(site_label, [-1]), max_s, min_s) for site_label in label_s_list])
pre_s_list = np.array(
[self.re_current(np.reshape(site_label, [-1]), max_s, min_s) for site_label in pre_s_list])
else:
label_s_list = np.array([np.reshape(site_label, [-1]) for site_label in label_s_list])
pre_s_list = np.array([np.reshape(site_label, [-1]) for site_label in pre_s_list])
print('speed prediction result')
label_all = np.reshape(np.array(label_s_list),newshape=[self.para.site_num, -1, self.para.output_length])
predict_all = np.reshape(np.array(pre_s_list), newshape=[self.para.site_num, -1, self.para.output_length])
label_s_list = np.reshape(label_s_list, [-1])
pre_s_list = np.reshape(pre_s_list, [-1])
mae, rmse, mape, cor, r2 = metric(pre_s_list, label_s_list) # 产生预测指标
for i in range(self.para.output_length):
print('in the %d time step, the evaluating indicator'%(i+1))
metric(np.reshape(predict_all[:,:,i], [-1]), np.reshape(label_all[:,:,i], [-1]))
# describe(label_list, predict_list) #预测值可视化
return mae
def main(argv=None):
'''
:param argv:
:return:
'''
print('#......................................beginning........................................#')
para = parameter(argparse.ArgumentParser())
para = para.get_para()
print('Please input a number : 1 or 0. (1 and 0 represents the training or testing, respectively).')
val = input('please input the number : ')
if int(val) == 1:
para.is_training = True
else:
para.batch_size = 1
para.is_training = False
pre_model = Model(para)
pre_model.initialize_session()
if int(val) == 1:
pre_model.run_epoch()
else:
pre_model.evaluate()
print('#...................................finished............................................#')
if __name__ == '__main__':
main()