Skip to content

Latest commit

 

History

History
135 lines (121 loc) · 3.15 KB

README.md

File metadata and controls

135 lines (121 loc) · 3.15 KB

Cocotools

introduce

A python lib with shell entry for managing json dataset files in coco format, support detection and keypoint working

install

  • python3 -m pip install cocotools
  • coco --install-completion (using this for better shell completion)

uninstall

  • python3 -m pip uninstall cocotools

usage

create coco file

  1. create empty coco file from image directory

     coco from-image-dir IMAGE_DIR [--with-box] [-o OUTPUT_FILE]
  2. create coco file from human labeling result

     coco convert-box-labeling LABEL_FILE IMAGE_DIR [-o OUTPUT_FILE]

    The labeling file should be like this:

    {
        "img_name_1.jpg": {
            "data": [
                {
                    "bbox": [
                        2.598000000000013,
                        97.862,
                        152.422,
                        155.886
                    ],
                    "type": "car",
                    "values": {},
                    "id": 1
                },
                {
                    "bbox": [
                        176.67099999999996,
                        114.31700000000001,
                        160.217,
                        129.905
                    ],
                    "type": "car",
                    "values": {},
                    "id": 2
                }
            ]
        },
        "img_name_2.jpg": {
            "data": [
                {
                    "bbox": [
                        0,
                        508.394,
                        335.324,
                        497.577
                    ],
                    "type": "person",
                    "values": {},
                    "id": 1
                }
            ]
        }
    }

visualize

Visualize box (and keypoints) result on detection (or ground truth) files

coco visualize COCO_FILE IMG_DIR

print stats

Show how many images/boxes/categories in a coco file

coco print-stat COCO_FILES...

evaluation

coco evaluate [OPTIONS] GT_FILE DT_FILE

merge different coco files

coco merge [-o, --output FILE] INPUTS_COCOS...

convert id type

  1. using string id
    coco to-str-id COCO_FILE
  2. using integer id
    coco to-num-id COCO_FILE

split dataset

split dataset into train (80%) and val (20%)

coco split-dataset COCO_FILE IMAGE_DIR

others

  1. coco cmd "SOME PYTHON CODE" using python code for more operations
  2. python -m coco.badcase GT_COCO DT_COCO -i IMAGE_DIR for visualizing badcase //1. python -m coco.distribution_analyze ref coco for obtain channels which boxes similar with ref's
  3. from coco import COCO using lib in python code

changelog

  • 0.2.0.1 using pypi for distribution
  • 0.2.0.0 add badcase module for badcase box visualize add distribution_analyze module for analyze box distribution in one dataset
  • 0.1.1.5 add keep_images option for filters
  • 0.1.1.4 add debug argument
  • 0.1.1.3 support detection file with num ids
  • 0.1.1.2 add -e for evaluate
  • 0.1.1.1 fix console entry
  • 0.1.1 add argparse
  • 0.1.0 initialize the repo