-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov5_detect.py
181 lines (149 loc) · 7.34 KB
/
yolov5_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run inference on images, videos, directories, streams, etc.
Usage:
$ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640
"""
import argparse
import sys
import os
import time
from pathlib import Path
import cv2
import numpy as np
import torch
FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
from models.experimental import attempt_load
from utils.datasets import LoadImages
from utils.general import check_img_size, check_requirements, colorstr, is_ascii, non_max_suppression, \
scale_coords, xyxy2xywh
from utils.plots import Annotator, colors
from utils.torch_utils import select_device, time_sync
@torch.no_grad()
def run_yolo_detect(weights, # model.pt path(s)
source, # file/dir/URL/glob, 0 for webcam
imgsz=256, # inference size (pixels)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=2, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
save_img=False, # save detect result
save_txt=True, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
augment=False, # augmented inference
line_thickness=3, # bounding box thickness (pixels)
half=False, # use FP16 half-precision inference
):
if isinstance(imgsz, int):
imgsz = [imgsz, imgsz]
else:
imgsz *= 2 if len(imgsz) == 1 else 1
# Directories
save_dir = Path(source).parent
pred_dir = save_dir / 'pred_images'
label_dir = save_dir / 'labels'
if save_img:
pred_dir.mkdir(parents=True, exist_ok=True)
label_dir.mkdir(parents=True, exist_ok=True) # make dir
# Initialize
device = select_device(device)
half &= device.type != 'cpu' # half precision only supported on CUDA
# Load model
stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
names = model.module.names if hasattr(model, 'module') else model.names # get class names
if half:
model.half() # to FP16
imgsz = check_img_size(imgsz, s=stride) # check image size
ascii = is_ascii(names) # names are ascii (use PIL for UTF-8)
# Dataloader
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=True)
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img = img / 255.0 # 0 - 255 to 0.0 - 1.0
if len(img.shape) == 3:
img = img[None] # expand for batch dim
# Inference
t1 = time_sync()
pred = model(img, augment=augment, visualize=False)[0]
# NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, max_det=max_det)
t2 = time_sync()
# Process predictions
for det in pred: # detections per image
p, s, im0 = path, '', im0s.copy()
p = Path(p) # to Path
pred_path = str(pred_dir / p.name) # img.jpg
txt_path = str(label_dir / p.stem) # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
annotator = Annotator(im0, line_width=line_thickness, pil=not ascii)
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img: # Add bbox to image
c = int(cls) # integer class
label = f'{names[c]} {conf:.2f}'
annotator.box_label(xyxy, label, color=colors(c, True))
# Print time (inference + NMS)
#print(f'{s}Done. ({t2 - t1:.3f}s)')
# Save results (image with detections)
if save_img:
im0 = annotator.result()
cv2.imwrite(pred_path, im0)
s = f"\n{len(list(label_dir.glob('*.txt')))} labels saved to {label_dir}" if save_txt else ''
#print(f"Results saved to {colorstr('bold', pred_dir)}{s}")
#print(f'Done. ({time.time() - t0:.3f}s)')
return str(label_dir)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='data/images', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=2, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--save-img', action='store_true', help='save detection results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
return opt
def main(opt):
print(colorstr('detect: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
check_requirements(exclude=('tensorboard', 'thop'))
#run_yolo_detect(**vars(opt))
source_dir = opt.source
source_name = source_dir.split('/')[-1] if source_dir.split('/')[-1] != '' else source_dir.split('/')[-2]
opt.project = os.path.join(opt.project, source_name)
for patient in os.listdir(source_dir):
if not os.path.isdir(os.path.join(source_dir, patient)):
continue
opt.source = os.path.join(source_dir, patient)
opt.name = patient
run_yolo_detect(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)