Skip to content

Latest commit

 

History

History
 
 

whisper

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

(简体中文|English)

Introduction

Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification.

Whisper model trained by OpenAI whisper https://github.com/openai/whisper

Usage

1. Installation

see installation.

You can choose one way from easy, meduim and hard to install paddlespeech.

2. Prepare Input File

The input of this demo should be a WAV file(.wav), and the sample rate must be the same as the model.

Here are sample files for this demo that can be downloaded:

wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav

3. Usage

  • Command Line(Recommended)

    # to recognize text 
    paddlespeech whisper --task transcribe --input ./zh.wav
    
    # to change model English-Only base size model
    paddlespeech whisper --lang en --size base --task transcribe  --input ./en.wav
    
    # to recognize text and translate to English
    paddlespeech whisper --task translate --input ./zh.wav
    

    Usage:

    paddlespeech whisper --help

    Arguments:

    • input(required): Audio file to recognize.
    • model: Model type of asr task. Default: whisper-large.
    • task: Output type. Default: transcribe.
    • lang: Model language. Default: ``. Use en to choice English-only model. Now [medium,base,small,tiny] size can support English-only.
    • size: Model size for decode. Defalut: large. Now can support [large,medium,base,small,tiny].
    • language: Set decode language. Default: None. Forcibly set the recognized language, which is determined by the model itself by default.
    • sample_rate: Sample rate of the model. Default: 16000. Other sampling rates are not supported now.
    • config: Config of asr task. Use pretrained model when it is None. Default: None.
    • ckpt_path: Model checkpoint. Use pretrained model when it is None. Default: None.
    • yes: No additional parameters required. Once set this parameter, it means accepting the request of the program by default, which includes transforming the audio sample rate. Default: False.
    • device: Choose device to execute model inference. Default: default device of paddlepaddle in current environment.
    • verbose: Show the log information.
  • Python API

    import paddle
    from paddlespeech.cli.whisper import WhisperExecutor
    
    whisper_executor = WhisperExecutor()
    
    # to recognize text 
    text = whisper_executor(
        model='whisper',
        task='transcribe',
        sample_rate=16000,
        config=None,  # Set `config` and `ckpt_path` to None to use pretrained model.
        ckpt_path=None,
        audio_file='./zh.wav',
        device=paddle.get_device())
    print('ASR Result: \n{}'.format(text))
    
    # to recognize text and translate to English
    feature = whisper_executor(
        model='whisper',
        task='translate',
        sample_rate=16000,
        config=None,  # Set `config` and `ckpt_path` to None to use pretrained model.
        ckpt_path=None,
        audio_file='./zh.wav',
        device=paddle.get_device())
    print('Representation: \n{}'.format(feature))

    Output:

    Transcribe Result:
    Detected language: Chinese
    [00:00.000 --> 00:05.000] 我认为跑步最重要的就是给我带来了身体健康
    {'text': '我认为跑步最重要的就是给我带来了身体健康', 'segments': [{'id': 0, 'seek': 0, 'start': 0.0, 'end': 5.0, 'text': '我认为跑步最重要的就是给我带来了身体健康', 'tokens': [50364, 1654, 7422, 97, 13992, 32585, 31429, 8661, 24928, 1546, 5620, 49076, 4845, 99, 34912, 19847, 29485, 44201, 6346, 115, 50614], 'temperature': 0.0, 'avg_logprob': -0.23577967557040128, 'compression_ratio': 0.28169014084507044, 'no_speech_prob': 0.028302080929279327}], 'language': 'zh'}
    
    Translate Result:
    Detected language: Chinese
    [00:00.000 --> 00:05.000]  I think the most important thing about running is that it brings me good health.
    {'text': ' I think the most important thing about running is that it brings me good health.', 'segments': [{'id': 0, 'seek': 0, 'start': 0.0, 'end': 5.0, 'text': ' I think the most important thing about running is that it brings me good health.', 'tokens': [50364, 286, 519, 264, 881, 1021, 551, 466, 2614, 307, 300, 309, 5607, 385, 665, 1585, 13, 50614], 'temperature': 0.0, 'avg_logprob': -0.47945233395225123, 'compression_ratio': 1.095890410958904, 'no_speech_prob': 0.028302080929279327}], 'language': 'zh'}