forked from zhuoxiangpang/ism_person_openpose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunOpenpose.py
248 lines (202 loc) · 11.5 KB
/
runOpenpose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import cv2
import numpy as np
from torch import from_numpy, jit
from openpose_modules.keypoints import extract_keypoints, group_keypoints
from openpose_modules.pose import Pose
from action_detect.detect import action_detect
import os
from math import ceil, floor
from utils.contrastImg import coincide
os.environ["PYTORCH_JIT"] = "0"
class ImageReader(object):
def __init__(self, file_names):
self.file_names = file_names
self.max_idx = len(file_names)
def __iter__(self):
self.idx = 0
return self
def __next__(self):
if self.idx == self.max_idx:
raise StopIteration
img = cv2.imread(self.file_names[self.idx], cv2.IMREAD_COLOR)
if img.size == 0:
raise IOError('Image {} cannot be read'.format(self.file_names[self.idx]))
self.idx = self.idx + 1
return img
class VideoReader(object):
def __init__(self, file_name, code_name):
self.file_name = file_name
self.code_name = str(code_name)
try: # OpenCV needs int to read from webcam
self.file_name = int(file_name)
except ValueError:
pass
def __iter__(self):
self.cap = cv2.VideoCapture(self.file_name)
if not self.cap.isOpened():
raise IOError('Video {} cannot be opened'.format(self.file_name))
return self
def __next__(self):
was_read, img = self.cap.read()
if not was_read:
raise StopIteration
# print(self.cap.get(7),self.cap.get(5))
cv2.putText(img, self.code_name, (5, 35),
cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255))
return img
def normalize(img, img_mean, img_scale):
img = np.array(img, dtype=np.float32)
img = (img - img_mean) * img_scale
return img
def pad_width(img, stride, pad_value, min_dims):
h, w, _ = img.shape
h = min(min_dims[0], h)
min_dims[0] = ceil(min_dims[0] / float(stride)) * stride
min_dims[1] = max(min_dims[1], w)
min_dims[1] = ceil(min_dims[1] / float(stride)) * stride
pad = []
pad.append(int(floor((min_dims[0] - h) / 2.0)))
pad.append(int(floor((min_dims[1] - w) / 2.0)))
pad.append(int(min_dims[0] - h - pad[0]))
pad.append(int(min_dims[1] - w - pad[1]))
padded_img = cv2.copyMakeBorder(img, pad[0], pad[2], pad[1], pad[3],
cv2.BORDER_CONSTANT, value=pad_value)
return padded_img, pad
def infer_fast(net, img, net_input_height_size, stride, upsample_ratio, cpu,
pad_value=(0, 0, 0), img_mean=(128, 128, 128), img_scale=1 / 256):
height, width, _ = img.shape # 实际高宽
scale = net_input_height_size / height # 将实际高缩放到期望高的缩放倍数
scaled_img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) # 缩放后的图像
scaled_img = normalize(scaled_img, img_mean, img_scale) # 归一化图像
min_dims = [net_input_height_size, max(scaled_img.shape[1], net_input_height_size)]
padded_img, pad = pad_width(scaled_img, stride, pad_value, min_dims) # 填充到高宽为stride 整数倍的值
tensor_img = from_numpy(padded_img).permute(2, 0, 1).unsqueeze(0).float() # 有HWC转成CHW(BGR格式)
if not cpu:
tensor_img = tensor_img.cuda()
stages_output = net(tensor_img) # 得到网络输出
# print(stages_output)
stage2_heatmaps = stages_output[-2] # 最后一个stage的热图
heatmaps = np.transpose(stage2_heatmaps.squeeze().cpu().data.numpy(), (1, 2, 0)) # 最后一个stage的热图作为最终的热图
heatmaps = cv2.resize(heatmaps, (0, 0), fx=upsample_ratio, fy=upsample_ratio,
interpolation=cv2.INTER_CUBIC) # 热图放大upsample_ratio倍
stage2_pafs = stages_output[-1] # 最后一个stage的paf
pafs = np.transpose(stage2_pafs.squeeze().cpu().data.numpy(), (1, 2, 0)) # 最后一个stage的paf作为最终的paf
pafs = cv2.resize(pafs, (0, 0), fx=upsample_ratio, fy=upsample_ratio,
interpolation=cv2.INTER_CUBIC) # paf 放大upsample_ratio倍
return heatmaps, pafs, scale, pad # 返回热图,paf,输入模型图象相比原始图像缩放倍数,输入模型图像padding尺寸
def run_demo(net, action_net, image_provider, height_size, cpu, boxList):
net = net.eval()
if not cpu:
net = net.cuda()
stride = 8
upsample_ratio = 4
num_keypoints = Pose.num_kpts # 18
i = 0
for img in image_provider: # 遍历图像集
orig_img = img.copy() # copy 一份
# print(i)
fallFlag = 0
if i % 1 == 0:
heatmaps, pafs, scale, pad = infer_fast(net, img, height_size, stride, upsample_ratio,
cpu) # 返回热图,paf,输入模型图象相比原始图像缩放倍数,输入模型图像padding尺寸
total_keypoints_num = 0
all_keypoints_by_type = [] # all_keypoints_by_type为18个list,每个list包含Ni个当前点的x、y坐标,当前点热图值,当前点在所有特征点中的index
for kpt_idx in range(num_keypoints): # 19th for bg 第19个为背景,之考虑前18个关节点
total_keypoints_num += extract_keypoints(heatmaps[:, :, kpt_idx], all_keypoints_by_type,
total_keypoints_num)
pose_entries, all_keypoints = group_keypoints(all_keypoints_by_type, pafs,
demo=True) # 得到所有分配的人(前18维为每个人各个关节点在所有关节点中的索引,后两唯为每个人得分及每个人关节点数量),及所有关节点信息
for kpt_id in range(all_keypoints.shape[0]): # 依次将每个关节点信息缩放回原始图像上
all_keypoints[kpt_id, 0] = (all_keypoints[kpt_id, 0] * stride / upsample_ratio - pad[1]) / scale
all_keypoints[kpt_id, 1] = (all_keypoints[kpt_id, 1] * stride / upsample_ratio - pad[0]) / scale
current_poses = []
for n in range(len(pose_entries)): # 依次遍历找到的每个人
if len(pose_entries[n]) == 0:
continue
pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1
for kpt_id in range(num_keypoints):
if pose_entries[n][kpt_id] != -1.0: # keypoint was found
pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0])
pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1])
pose = Pose(pose_keypoints, pose_entries[n][18])
posebox = (int(pose.bbox[0]), int(pose.bbox[1]), int(pose.bbox[0]) + int(pose.bbox[2]),
int(pose.bbox[1]) + int(pose.bbox[3]))
if boxList:
coincideValue = coincide(boxList, posebox)
print(posebox)
print('coincideValue:' + str(coincideValue))
if len(pose.getKeyPoints()) >= 10 and coincideValue >= 0.3 and pose.lowerHalfFlag < 3: # 当人体的点数大于10个的时候算作一个人,同时判断yolov5的框和pose的框是否有交集并且占比30%,同时要有下半身
current_poses.append(pose)
else:
current_poses.append(pose)
for pose in current_poses:
pose.img_pose = pose.draw(img, is_save=True, show_draw=True)
crown_proportion = pose.bbox[2] / pose.bbox[3] # 宽高比
pose = action_detect(action_net, pose, crown_proportion) # 判断摔倒还是正常
if pose.pose_action == 'fall':
cv2.rectangle(img, (pose.bbox[0], pose.bbox[1]),
(pose.bbox[0] + pose.bbox[2], pose.bbox[1] + pose.bbox[3]), (0, 0, 255), thickness=3)
cv2.putText(img, 'state: {}'.format(pose.pose_action), (pose.bbox[0], pose.bbox[1] - 16),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255))
fallFlag = 1
else:
cv2.rectangle(img, (pose.bbox[0], pose.bbox[1]),
(pose.bbox[0] + pose.bbox[2], pose.bbox[1] + pose.bbox[3]), (0, 255, 0))
cv2.putText(img, 'state: {}'.format(pose.pose_action), (pose.bbox[0], pose.bbox[1] - 16),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 255, 0))
# fallFlag = 1
# if fallFlag == 1:
# t = time.time()
# cv2.imwrite(f'C:/zqr/project/yolov5_openpose/Image/{t}.jpg', img)
# print('我保存照片了')
img = cv2.addWeighted(orig_img, 0.6, img, 0.4, 0)
# 保存识别后的照片
# cv2.imwrite(f'C:/zqr/project/yolov5_openpose/Image/{t}.jpg', img)
cv2.imshow('Lightweight Human Pose Estimation Python Demo', img)
cv2.waitKey(1)
i += 1
cv2.destroyAllWindows()
def detect_main(video_name=''):
parser = argparse.ArgumentParser(
description='''Lightweight human pose estimation python demo.
This is just for quick results preview.
Please, consider c++ demo for the best performance.''')
parser.add_argument('--checkpoint-path', type=str, default='openpose.jit',
help='path to the checkpoint')
parser.add_argument('--height-size', type=int, default=256, help='network input layer height size')
parser.add_argument('--video', type=str, default='', help='path to video file or camera id')
parser.add_argument('--images', nargs='+',
default='D:\\project\\ism_person_openpose\\data\\pics',
help='path to input image(s)')
parser.add_argument('--cpu', action='store_true', help='run network inference on cpu')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--code_name', type=str, default='None', help='the name of video')
# parser.add_argument('--track', type=int, default=0, help='track pose id in video')
# parser.add_argument('--smooth', type=int, default=1, help='smooth pose keypoints')
args = parser.parse_args()
if video_name != '':
args.code_name = video_name
if args.video == '' and args.images == '':
raise ValueError('Either --video or --image has to be provided')
net = jit.load(r'.\action_detect\checkPoint\openpose.jit')
# *************************************************************************
action_net = jit.load(r'.\action_detect\checkPoint\action.jit')
# ************************************************************************
if args.video != '':
frame_provider = VideoReader(args.video, args.code_name)
else:
images_dir = []
if os.path.isdir(args.images):
for img_dir in os.listdir(args.images):
images_dir.append(os.path.join(args.images, img_dir))
frame_provider = ImageReader(images_dir)
else:
img = cv2.imread(args.images, cv2.IMREAD_COLOR)
frame_provider = [img]
# *************************************************************************
# args.track = 0
# camera = VideoReader('rtsp://admin:[email protected]/cam/realmonitor?channel=1&subtype=0',args.code_name)
run_demo(net, action_net, frame_provider, args.height_size, True, [])
if __name__ == '__main__':
detect_main()