106点人脸关键点检测的PFLD算法实现
-
转换后的ONNX模型
-
预训练权重
-
性能测试
-
update GhostNet
-
update MobileNetV3
Backbone param MACC nme Link ONNX MobileNetV2 1.26M 393M 4.96% v2 v2.onnx MobileNetV3 1.44M 201.8M 4.40% v3 v3.onnx MobileNetV3_Small 0.22M 13M 6.22% lite lite.onnx
测试电脑MacBook 2017 13-Inch CPU i5-3.1GHz (single core)
backbone | FPS(onnxruntime cpu) | Time(single face) |
---|---|---|
v2.onnx | 60.9 | 16ms |
V3.onnx | 62.7 | 15.9ms |
lite.onnx | 255 | 3.9ms |
- Requirements
torch=1.2.0
torchvision
opencv-python
tqdm
onnxruntime==1.2.2
numpy
-
数据集准备
# 下载数据集到data/imgs下 cd data python prepare.py
# data 文件夹结构 data/ imgs/ train_data/ imgs/ list.txt test_data/ imgs/ list.txt
-
训练
CUDA_VISIBLE_DEVICES=0 python train.py --backbone=v3
# 可选backbone为v2 v3 lite
https://github.com/polarisZhao/PFLD-pytorch