forked from suragnair/alpha-zero-general
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpit.py
54 lines (41 loc) · 1.39 KB
/
pit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import Arena
from MCTS import MCTS
from othello.OthelloGame import OthelloGame
from othello.OthelloPlayers import *
from othello.pytorch.NNet import NNetWrapper as NNet
import numpy as np
from utils import *
"""
use this script to play any two agents against each other, or play manually with
any agent.
"""
mini_othello = False # Play in 6x6 instead of the normal 8x8.
human_vs_cpu = True
if mini_othello:
g = OthelloGame(6)
else:
g = OthelloGame(8)
# all players
rp = RandomPlayer(g).play
gp = GreedyOthelloPlayer(g).play
hp = HumanOthelloPlayer(g).play
# nnet players
n1 = NNet(g)
if mini_othello:
n1.load_checkpoint('./pretrained_models/othello/pytorch/','6x100x25_best.pth.tar')
else:
n1.load_checkpoint('./pretrained_models/othello/pytorch/','8x8_100checkpoints_best.pth.tar')
args1 = dotdict({'numMCTSSims': 50, 'cpuct':1.0})
mcts1 = MCTS(g, n1, args1)
n1p = lambda x: np.argmax(mcts1.getActionProb(x, temp=0))
if human_vs_cpu:
player2 = hp
else:
n2 = NNet(g)
n2.load_checkpoint('./pretrained_models/othello/pytorch/', '8x8_100checkpoints_best.pth.tar')
args2 = dotdict({'numMCTSSims': 50, 'cpuct': 1.0})
mcts2 = MCTS(g, n2, args2)
n2p = lambda x: np.argmax(mcts2.getActionProb(x, temp=0))
player2 = n2p # Player 2 is neural network if it's cpu vs cpu.
arena = Arena.Arena(n1p, player2, g, display=OthelloGame.display)
print(arena.playGames(2, verbose=True))