- Google Colab
- model name : AMD EPYC 7B12
- number of CPU cores : 2
- MemTotal : 13297228 kB
- MemFree : 7424924 kB
- MemAvailable : 11290352 kB
-
Original Dataset:
- “공공자전거 대여소 정보(22.06월 기준).csv” from 서울 열린데이터 광장(Seoul Open Data Plaza)(https://data.seoul.go.kr/)
- “서울특별시 공공자전거 이용정보(시간대별)_21.01.csv”~“서울특별시 공공자전거 이용정보(시간대별)_21.12.csv” from 서울 열린데이터 광장(Seoul Open Data Plaza)(https://data.seoul.go.kr/)
- “SURFACE_ASOS_108_HR_2021_2021_2022.csv”(서울특별시 2021년도 종관기상관측자료) from 기상자료개방 포털(KMA) (https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36)
-
Original Dataset is too big, so we preprocessed data and reduced the size of dataset
- RandomForest and Gradient Boosting (In this project, the result of gradient boosting was better than random forest)
- Hyperparameter Search: GridSearch
- After Hyperparameter tuning, R2 Score of Gradient Boosting was 0.9380330070944691
- Download notebook file. (seoul_bike_sharing_damand_prediction.ipynb)
- Download dataset file(seodaemunAndmapo.zip), unzip this file, and get seodaemunAndmapo.csv file.
- Open notebook file in Colab and upload csv file to Colab or your Google Drive.
- Run cells
- The features of our datset is korean. so, you need to install fonts following the instruction at the top of the notebooke file.
# For Hangeul Font Issue
!sudo apt-get install -y fonts-nanum
!sudo fc-cache -fv
!rm ~/.cache/matplotlib -rf
- If you downloaded project files on your drive, then Mount your Google Drive.
# Mounting Google Drive
from google.colab import drive
drive.mount('/content/drive')
- set the data path(location of seodaemunAndmapo.csv) to DATA_PATH
*. the path should be absolute path
# set data path
import os
DATA_PATH = '/content/drive/MyDrive/seodaemunAndmapo.csv'
- run cells to load dataset, data preprocessing, train model, evaluation, interpretation
- kaggle (https://www.kaggle.com/code/kwonyoung234/for-beginner/notebook)
- scikit-learn (https://scikit-learn.org/)
- matplotlib (https://matplotlib.org/)
- heumsi's github (https://github.com/heumsi/Seoul-Public-bicycles-EDA)