Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

get rid of all stress/n_atoms #443

Merged
merged 3 commits into from
Jun 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions mace/modules/loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,11 +31,10 @@ def weighted_mean_squared_stress(ref: Batch, pred: TensorDict) -> torch.Tensor:
# energy: [n_graphs, ]
configs_weight = ref.weight.view(-1, 1, 1) # [n_graphs, ]
configs_stress_weight = ref.stress_weight.view(-1, 1, 1) # [n_graphs, ]
num_atoms = (ref.ptr[1:] - ref.ptr[:-1]).view(-1, 1, 1) # [n_graphs,]
return torch.mean(
configs_weight
* configs_stress_weight
* torch.square((ref["stress"] - pred["stress"]) / num_atoms)
* torch.square(ref["stress"] - pred["stress"])
) # []


Expand Down
13 changes: 3 additions & 10 deletions mace/tools/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,13 +60,13 @@ def valid_err_log(
)
elif (
log_errors == "PerAtomRMSEstressvirials"
and eval_metrics["rmse_stress_per_atom"] is not None
and eval_metrics["rmse_stress"] is not None
):
error_e = eval_metrics["rmse_e_per_atom"] * 1e3
error_f = eval_metrics["rmse_f"] * 1e3
error_stress = eval_metrics["rmse_stress_per_atom"] * 1e3
error_stress = eval_metrics["rmse_stress"] * 1e3
logging.info(
f"head: {valid_loader_name}, Epoch {epoch}: loss={valid_loss:.4f}, RMSE_E_per_atom={error_e:.1f} meV, RMSE_F={error_f:.1f} meV / A, RMSE_stress_per_atom={error_stress:.1f} meV / A^3"
f"head: {valid_loader_name}, Epoch {epoch}: loss={valid_loss:.4f}, RMSE_E_per_atom={error_e:.1f} meV, RMSE_F={error_f:.1f} meV / A, RMSE_stress={error_stress:.1f} meV / A^3"
)
elif (
log_errors == "PerAtomRMSEstressvirials"
Expand Down Expand Up @@ -405,7 +405,6 @@ def __init__(self, loss_fn: torch.nn.Module):
"stress_computed", default=torch.tensor(0.0), dist_reduce_fx="sum"
)
self.add_state("delta_stress", default=[], dist_reduce_fx="cat")
self.add_state("delta_stress_per_atom", default=[], dist_reduce_fx="cat")
self.add_state(
"virials_computed", default=torch.tensor(0.0), dist_reduce_fx="sum"
)
Expand Down Expand Up @@ -434,10 +433,6 @@ def update(self, batch, output): # pylint: disable=arguments-differ
if output.get("stress") is not None and batch.stress is not None:
self.stress_computed += 1.0
self.delta_stress.append(batch.stress - output["stress"])
self.delta_stress_per_atom.append(
(batch.stress - output["stress"])
/ (batch.ptr[1:] - batch.ptr[:-1]).view(-1, 1, 1)
)
if output.get("virials") is not None and batch.virials is not None:
self.virials_computed += 1.0
self.delta_virials.append(batch.virials - output["virials"])
Expand Down Expand Up @@ -480,10 +475,8 @@ def compute(self):
aux["q95_f"] = compute_q95(delta_fs)
if self.stress_computed:
delta_stress = self.convert(self.delta_stress)
delta_stress_per_atom = self.convert(self.delta_stress_per_atom)
aux["mae_stress"] = compute_mae(delta_stress)
aux["rmse_stress"] = compute_rmse(delta_stress)
aux["rmse_stress_per_atom"] = compute_rmse(delta_stress_per_atom)
aux["q95_stress"] = compute_q95(delta_stress)
if self.virials_computed:
delta_virials = self.convert(self.delta_virials)
Expand Down
84 changes: 42 additions & 42 deletions tests/test_run_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,30 +107,30 @@ def test_run_train(tmp_path, fitting_configs):
Es.append(at.get_potential_energy())

print("Es", Es)
# from a run on 28/03/2023 on main 88d49f9ed6925dec07d1777043a36e1fe4872ff3
# from a run on 04/06/2024 on stress_bugfix 967f0bfb6490086599da247874b24595d149caa7
ref_Es = [
0.0,
0.0,
-0.03911274694160493,
-0.0913651377675312,
-0.14973695873658766,
-0.0664839502025434,
-0.09968814898703926,
0.1248460531971883,
-0.0647495831154953,
-0.14589298347245963,
0.12918668431788108,
-0.13996496272772996,
-0.053211348522482806,
0.07845141245421094,
-0.08901520083723416,
-0.15467129065263446,
0.007727727865546765,
-0.04502061132025605,
-0.035848783030374,
-0.24410687104937906,
-0.0839034724949955,
-0.14756571357354326,
-0.039181344585828524,
-0.0915223395136733,
-0.14953484236456582,
-0.06662480820063998,
-0.09983737353050133,
0.12477442296789745,
-0.06486086271762856,
-0.1460607988519944,
0.12886334908465508,
-0.14000990081920373,
-0.05319886578958313,
0.07780520158391,
-0.08895480281886901,
-0.15474719614734422,
0.007756765146527644,
-0.044879267197498685,
-0.036065736712447574,
-0.24413743841886623,
-0.0838104612106429,
-0.14751978636626545
]

assert np.allclose(Es, ref_Es)
Expand Down Expand Up @@ -178,30 +178,30 @@ def test_run_train_missing_data(tmp_path, fitting_configs):
Es.append(at.get_potential_energy())

print("Es", Es)
# from a run on 28/03/2023 on main 88d49f9ed6925dec07d1777043a36e1fe4872ff3
# from a run on 04/06/2024 on stress_bugfix 967f0bfb6490086599da247874b24595d149caa7
ref_Es = [
0.0,
0.0,
-0.05449966431966507,
-0.11237663925685797,
0.03914539466246801,
-0.07500800414261456,
-0.13471106701173396,
0.02937255038020199,
-0.0652196693921633,
-0.14946129637190012,
0.19412338220281133,
-0.13546947741234333,
-0.05235148626886153,
-0.04957190959243316,
-0.07081384032242896,
-0.24575839901841345,
-0.0020512332640394916,
-0.038630330106902526,
-0.13621347044601181,
-0.2338465954158298,
-0.11777474787291177,
-0.14895508008918812,
-0.05464025113696155,
-0.11272131295940478,
0.039200919331076826,
-0.07517990972827505,
-0.13504202474582666,
0.0292022872055344,
-0.06541099574579018,
-0.1497824717832886,
0.19397709360828813,
-0.13587609467143014,
-0.05242956276828463,
-0.0504862057364953,
-0.07095795959430119,
-0.2463753796753703,
-0.002031543147676121,
-0.03864918790300681,
-0.13680153117705554,
-0.23418951968636786,
-0.11790833839379238,
-0.14930562311066484
]
assert np.allclose(Es, ref_Es)

Expand Down