Skip to content

Mirror repository for EMD package: issue-tracking and development happens at https://gitlab.com/emd-dev/emd

License

Notifications You must be signed in to change notification settings

AJQuinn/emd-mirror

Repository files navigation

A python package for Empirical Mode Decomposition and related spectral analyses.

Please note that this project is in active development for the moment - the API may change relatively quickly between releases!

Installation

You can install the latest stable release from the PyPI repository

pip install emd

or clone and install the source code.

git clone https://gitlab.com/emd-dev/emd.git
cd emd
pip install .

Requirements are specified in requirements.txt. Main functionality only depends on numpy and scipy for computation and matplotlib for visualisation.

Quick Start

Full documentation can be found at https://emd.readthedocs.org and development/issue tracking at gitlab.com/emd-dev/emd

Import emd

import emd

Define a simulated waveform containing a non-linear wave at 5Hz and a sinusoid at 1Hz.

import emd
sample_rate = 1000
seconds = 10
num_samples = sample_rate*seconds

import numpy as np
time_vect = np.linspace(0, seconds, num_samples)

freq = 5
nonlinearity_deg = .25  # change extent of deformation from sinusoidal shape [-1 to 1]
nonlinearity_phi = -np.pi/4  # change left-right skew of deformation [-pi to pi]
x = emd.utils.abreu2010(freq, nonlinearity_deg, nonlinearity_phi, sample_rate, seconds)
x += np.cos(2*np.pi*1*time_vect)

Estimate IMFs

imf = emd.sift.sift(x)

Compute instantaneous frequency, phase and amplitude using the Normalised Hilbert Transform Method.

IP, IF, IA = emd.spectra.frequency_transform(imf, sample_rate, 'hilbert')

Compute Hilbert-Huang spectrum

freq_edges, freq_bins = emd.spectra.define_hist_bins(0, 10, 100)
hht = emd.spectra.hilberthuang(IF, IA, freq_edges)
Make a summary plot

```python
import matplotlib.pyplot as plt
plt.figure(figsize=(16, 8))
plt.subplot(211, frameon=False)
plt.plot(time_vect, x, 'k')
plt.plot(time_vect, imf[:, 0]-4, 'r')
plt.plot(time_vect, imf[:, 1]-8, 'g')
plt.plot(time_vect, imf[:, 2]-12, 'b')
plt.xlim(time_vect[0], time_vect[-1])
plt.grid(True)
plt.subplot(212)
plt.pcolormesh(time_vect, freq_bins, hht, cmap='ocean_r')
plt.ylabel('Frequency (Hz)')
plt.xlabel('Time (secs)')
plt.grid(True)
plt.show()

About

Mirror repository for EMD package: issue-tracking and development happens at https://gitlab.com/emd-dev/emd

Resources

License

Stars

Watchers

Forks

Packages

No packages published