Skip to content

Commit

Permalink
Add PetabProblem class for handling PEtab-defined simulation con… (#2255
Browse files Browse the repository at this point in the history
)

…ditions

Makes it a bit easier to work with PEtab problems interactively or when implementing some PEtab-based objective function (#962).

---------

Co-authored-by: Fabian Fröhlich <[email protected]>
  • Loading branch information
dweindl and FFroehlich authored Jan 16, 2024
1 parent f16a4ab commit 2f7aaf4
Show file tree
Hide file tree
Showing 6 changed files with 459 additions and 266 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/test_petab_test_suite.yml
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ jobs:
run: |
source ./build/venv/bin/activate \
&& pytest --cov-report=xml:coverage.xml \
--cov=./ python/tests/test_*petab*.py
--cov=./ python/tests/test_*petab*.py python/tests/petab/
# run test models
- name: Run PEtab test suite
Expand Down
355 changes: 92 additions & 263 deletions python/examples/example_petab/petab.ipynb

Large diffs are not rendered by default.

9 changes: 7 additions & 2 deletions python/sdist/amici/petab/conditions.py
Original file line number Diff line number Diff line change
Expand Up @@ -396,7 +396,11 @@ def create_edatas(
if PREEQUILIBRATION_CONDITION_ID in simulation_conditions:
measurement_groupvar.append(petab.PREEQUILIBRATION_CONDITION_ID)
measurement_dfs = dict(
list(petab_problem.measurement_df.groupby(measurement_groupvar))
list(
petab_problem.measurement_df.fillna(
{PREEQUILIBRATION_CONDITION_ID: ""}
).groupby(measurement_groupvar)
)
)

edatas = []
Expand All @@ -405,10 +409,11 @@ def create_edatas(
if PREEQUILIBRATION_CONDITION_ID in condition:
measurement_index = (
condition.get(SIMULATION_CONDITION_ID),
condition.get(PREEQUILIBRATION_CONDITION_ID),
condition.get(PREEQUILIBRATION_CONDITION_ID) or "",
)
else:
measurement_index = (condition.get(SIMULATION_CONDITION_ID),)

edata = create_edata_for_condition(
condition=condition,
amici_model=amici_model,
Expand Down
275 changes: 275 additions & 0 deletions python/sdist/amici/petab/petab_problem.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,275 @@
"""PEtab-problem based simulations."""
import copy
from typing import Optional, Union

import amici
import pandas as pd
import petab
from petab.C import PREEQUILIBRATION_CONDITION_ID, SIMULATION_CONDITION_ID

from .conditions import create_edatas, fill_in_parameters
from .parameter_mapping import create_parameter_mapping


class PetabProblem:
"""Manage experimental conditions based on a PEtab problem definition.
Create :class:`ExpData` objects from a PEtab problem definition, and handle
parameter scales and parameter mapping.
:param petab_problem: PEtab problem definition.
:param amici_model: AMICI model
:param problem_parameters: Problem parameters to use for simulation
(default: PEtab nominal values and model values).
:param scaled_parameters: Whether the provided parameters are on PEtab
`parameterScale` or not.
:param simulation_conditions: Simulation conditions to use for simulation.
It can be used to subset the conditions in the PEtab problem.
All subsequent operations will only be performed on that subset.
By default, all conditions are used.
:param store_edatas: Whether to create and store all `ExpData` objects for
all conditions upfront. If set to ``False``, `ExpData` objects will be
created and disposed of on the fly during simulation. The latter saves
memory if the given PEtab problem comprises many simulation conditions.
"""

def __init__(
self,
petab_problem: petab.Problem,
amici_model: Optional[amici.Model] = None,
problem_parameters: Optional[dict[str, float]] = None,
scaled_parameters: bool = False,
simulation_conditions: Union[pd.DataFrame, list[dict]] = None,
store_edatas: bool = True,
):
self._petab_problem = copy.deepcopy(petab_problem)

if amici_model is not None:
self._amici_model = amici_model
else:
from .petab_import import import_petab_problem

self._amici_model = import_petab_problem(petab_problem)

self._scaled_parameters = scaled_parameters

self._simulation_conditions = simulation_conditions or (
petab_problem.get_simulation_conditions_from_measurement_df()
)
if not isinstance(self._simulation_conditions, pd.DataFrame):
self._simulation_conditions = pd.DataFrame(
self._simulation_conditions
)
if (
preeq_id := PREEQUILIBRATION_CONDITION_ID
) in self._simulation_conditions:
self._simulation_conditions[
preeq_id
] = self._simulation_conditions[preeq_id].fillna("")

if problem_parameters is None:
# Use PEtab nominal values as default
self._problem_parameters = self._default_parameters()
if scaled_parameters:
raise NotImplementedError(
"scaled_parameters=True in combination with default "
"parameters is not implemented yet."
)
else:
self._problem_parameters = problem_parameters

if store_edatas:
self._parameter_mapping = create_parameter_mapping(
petab_problem=self._petab_problem,
simulation_conditions=self._simulation_conditions,
scaled_parameters=self._scaled_parameters,
amici_model=self._amici_model,
)
self._create_edatas()
else:
self._parameter_mapping = None
self._edatas = None

def set_parameters(
self,
problem_parameters: dict[str, float],
scaled_parameters: bool = False,
):
"""Set problem parameters.
:param problem_parameters: Problem parameters to use for simulation.
This may be a subset of all parameters.
:param scaled_parameters: Whether the provided parameters are on PEtab
`parameterScale` or not.
"""
if scaled_parameters != self._scaled_parameters and self._parameter_mapping is not None:
# redo parameter mapping if scale changed
self._parameter_mapping = create_parameter_mapping(
petab_problem=self._petab_problem,
simulation_conditions=self._simulation_conditions,
scaled_parameters=scaled_parameters,
amici_model=self._amici_model,
)

if set(self._problem_parameters) - set(problem_parameters):
# not all parameters are provided - update
# bring previously set parameters to the same scale if necessary
if scaled_parameters and not self._scaled_parameters:
self._problem_parameters = (
self._petab_problem.scale_parameters(
self._problem_parameters,
)
)
elif not scaled_parameters and self._scaled_parameters:
self._problem_parameters = (
self._petab_problem.unscale_parameters(
self._problem_parameters,
)
)
self._problem_parameters |= problem_parameters
else:
self._problem_parameters = problem_parameters

self._scaled_parameters = scaled_parameters

if self._edatas:
fill_in_parameters(
edatas=self._edatas,
problem_parameters=self._problem_parameters,
scaled_parameters=self._scaled_parameters,
parameter_mapping=self._parameter_mapping,
amici_model=self._amici_model,
)

def get_edata(
self, condition_id: str, preequilibration_condition_id: str = None
) -> amici.ExpData:
"""Get ExpData object for a given condition.
NOTE: If ``store_edatas=True`` was passed to the constructor and the
returned object is modified, the changes will be reflected in the
internal `ExpData` objects. Also, if parameter values of
`PetabProblem` are changed, all `ExpData` objects will be updated.
Create a deep copy if you want to avoid this.
:param condition_id: PEtab condition ID
:param preequilibration_condition_id: PEtab preequilibration condition ID
:return: ExpData object
"""
# exists or has to be created?
if self._edatas:
edata_id = condition_id
if preequilibration_condition_id:
edata_id += "+" + preequilibration_condition_id

for edata in self._edatas:
if edata.id == edata_id:
return edata

return self._create_edata(condition_id, preequilibration_condition_id)

def get_edatas(self):
"""Get all ExpData objects.
NOTE: If ``store_edatas=True`` was passed to the constructor and the
returned objects are modified, the changes will be reflected in the
internal `ExpData` objects. Also, if parameter values of
`PetabProblem` are changed, all `ExpData` objects will be updated.
Create a deep copy if you want to avoid this.
:return: List of ExpData objects
"""
if self._edatas:
# shallow copy
return self._edatas.copy()

# not storing edatas - create and return
self._parameter_mapping = create_parameter_mapping(
petab_problem=self._petab_problem,
simulation_conditions=self._simulation_conditions,
scaled_parameters=self._scaled_parameters,
amici_model=self._amici_model,
)
self._create_edatas()
result = self._edatas
self._edatas = []
return result

def _create_edata(
self, condition_id: str, preequilibration_condition_id: str
) -> amici.ExpData:
"""Create ExpData object for a given condition.
:param condition_id: PEtab condition ID
:param preequilibration_condition_id: PEtab preequilibration condition ID
:return: ExpData object
"""
simulation_condition = pd.DataFrame(
[
{
SIMULATION_CONDITION_ID: condition_id,
PREEQUILIBRATION_CONDITION_ID: preequilibration_condition_id
or None,
}
]
)
edatas = create_edatas(
amici_model=self._amici_model,
petab_problem=self._petab_problem,
simulation_conditions=simulation_condition,
)
parameter_mapping = create_parameter_mapping(
petab_problem=self._petab_problem,
simulation_conditions=simulation_condition,
scaled_parameters=self._scaled_parameters,
amici_model=self._amici_model,
)

# Fill parameters in ExpDatas (in-place)
fill_in_parameters(
edatas=edatas,
problem_parameters={
p: self._problem_parameters[p]
for p in parameter_mapping.free_symbols
if p in self._problem_parameters
},
scaled_parameters=self._scaled_parameters,
parameter_mapping=parameter_mapping,
amici_model=self._amici_model,
)

if len(edatas) != 1:
raise AssertionError("Expected exactly one ExpData object.")
return edatas[0]

def _create_edatas(
self,
):
"""Create ExpData objects from PEtab problem definition."""
self._edatas = create_edatas(
amici_model=self._amici_model,
petab_problem=self._petab_problem,
simulation_conditions=self._simulation_conditions,
)

fill_in_parameters(
edatas=self._edatas,
problem_parameters=self._problem_parameters,
scaled_parameters=self._scaled_parameters,
parameter_mapping=self._parameter_mapping,
amici_model=self._amici_model,
)

def _default_parameters(self) -> dict[str, float]:
"""Get unscaled default parameters."""
return {
t.Index: getattr(t, petab.NOMINAL_VALUE)
for t in self._petab_problem.parameter_df[
self._petab_problem.parameter_df[petab.ESTIMATE] == 1
].itertuples()
}

@property
def model(self) -> amici.Model:
"""AMICI model."""
return self._amici_model
1 change: 1 addition & 0 deletions python/sdist/setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ zip_safe = False
petab = petab>=0.2.1
pysb = pysb>=1.13.1
test =
benchmark_models_petab @ git+https://github.com/Benchmarking-Initiative/Benchmark-Models-PEtab.git@master#subdirectory=src/python
h5py
pytest
pytest-cov
Expand Down
Loading

0 comments on commit 2f7aaf4

Please sign in to comment.