Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update common_recipes.ipynb #85

Merged
merged 1 commit into from
Dec 2, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
140 changes: 98 additions & 42 deletions docs/notebooks/common_recipes.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -363,6 +363,63 @@
"print(tree_where(tree > 2, tree + 100, 0))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`bcmap` on pytrees with non-jaxtype\n",
"\n",
"In case the tree has some non-jaxtype leaves, The above will fail, but we can use `tree_mask`/`tree_unmask` to fix it"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"bcmap fail '>' not supported between instances of 'str' and 'int'\n",
"Tree(a=0.0, b=(0.0, 103.0), c=[104. 105. 106.], name=tree, func=<lambda>(x))\n"
]
}
],
"source": [
"# in case the tree has some non-jaxtype leaves\n",
"# the above will fail, but we can use `tree_mask`/`tree_unmask` to fix it\n",
"import serket as sk\n",
"import jax.numpy as jnp\n",
"from typing import Callable\n",
"\n",
"\n",
"@sk.leafwise # enable math operations on leaves\n",
"@sk.autoinit # generate __init__ from type annotations\n",
"class Tree(sk.TreeClass):\n",
" a: float = 1.0\n",
" b: tuple[float] = (2.0, 3.0)\n",
" c: jax.Array = jnp.array([4.0, 5.0, 6.0])\n",
" name: str = \"tree\" # non-jaxtype\n",
" func: Callable = lambda x: x # non-jaxtype\n",
"\n",
"\n",
"tree = Tree()\n",
"\n",
"try:\n",
" # make where work with arbitrary pytrees with non-jaxtype leaves\n",
" tree_where = sk.bcmap(jnp.where)\n",
" # for values > 2, add 100, else set to 0\n",
" print(tree_where(tree > 2, tree + 100, 0))\n",
"except TypeError as e:\n",
" print(\"bcmap fail\", e)\n",
" # now we can use `tree_mask`/`tree_unmask` to fix it\n",
" masked_tree = sk.tree_mask(tree) # mask non-jaxtype leaves\n",
" masked_tree = tree_where(masked_tree > 2, masked_tree + 100, 0)\n",
" unmasked_tree = sk.tree_unmask(masked_tree)\n",
" print(unmasked_tree)"
]
},
{
"attachments": {},
"cell_type": "markdown",
Expand All @@ -380,7 +437,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 9,
"metadata": {},
"outputs": [
{
Expand Down Expand Up @@ -450,7 +507,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 10,
"metadata": {},
"outputs": [
{
Expand All @@ -473,31 +530,30 @@
"\n",
"\n",
"class ArrayValidator(sk.TreeClass):\n",
" \"\"\"Validate shape and dtype of input array.\n",
"\n",
" Args:\n",
" shape: Expected shape of array. available values are int, None, ...\n",
" use int for fixed size, None for any size, and ... for any number\n",
" of dimensions. for example (..., 1) allows any number of dimensions\n",
" with the last dimension being 1. (1, ..., 1) allows any number of\n",
" dimensions with the first and last dimensions being 1.\n",
" dtype: Expected dtype of array.\n",
"\n",
" Example:\n",
" >>> x = jnp.ones((5, 5))\n",
" >>> # any number of dimensions with last dim=5\n",
" >>> shape = (..., 5)\n",
" >>> dtype = jnp.float32\n",
" >>> validator = ArrayValidator(shape, dtype)\n",
" >>> validator(x) # no error\n",
"\n",
" >>> # must be 2 dimensions with first dim unconstrained and last dim=5\n",
" >>> shape = (None, 5)\n",
" >>> validator = ArrayValidator(shape, dtype)\n",
" >>> validator(x) # no error\n",
" \"\"\"\n",
" def __init__(self, shape, dtype):\n",
" \"\"\"Validate shape and dtype of input array.\n",
"\n",
" Args:\n",
" shape: Expected shape of array. available values are int, None, ...\n",
" use int for fixed size, None for any size, and ... for any number\n",
" of dimensions. for example (..., 1) allows any number of dimensions\n",
" with the last dimension being 1. (1, ..., 1) allows any number of\n",
" dimensions with the first and last dimensions being 1.\n",
" dtype: Expected dtype of array.\n",
"\n",
" Example:\n",
" >>> x = jnp.ones((5, 5))\n",
" >>> # any number of dimensions with last dim=5\n",
" >>> shape = (..., 5)\n",
" >>> dtype = jnp.float32\n",
" >>> validator = ArrayValidator(shape, dtype)\n",
" >>> validator(x) # no error\n",
"\n",
" >>> # must be 2 dimensions with first dim unconstrained and last dim=5\n",
" >>> shape = (None, 5)\n",
" >>> validator = ArrayValidator(shape, dtype)\n",
" >>> validator(x) # no error\n",
" \"\"\"\n",
"\n",
" if shape.count(...) > 1:\n",
" raise ValueError(\"Only one ellipsis allowed\")\n",
"\n",
Expand Down Expand Up @@ -586,7 +642,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 11,
"metadata": {},
"outputs": [
{
Expand All @@ -612,7 +668,7 @@
" [1.]], dtype=float32)"
]
},
"execution_count": 10,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
Expand Down Expand Up @@ -669,7 +725,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 12,
"metadata": {},
"outputs": [
{
Expand Down Expand Up @@ -758,7 +814,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 13,
"metadata": {},
"outputs": [
{
Expand All @@ -782,7 +838,7 @@
" )]"
]
},
"execution_count": 12,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
Expand Down Expand Up @@ -838,7 +894,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 14,
"metadata": {},
"outputs": [
{
Expand Down Expand Up @@ -955,7 +1011,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 15,
"metadata": {},
"outputs": [
{
Expand All @@ -964,7 +1020,7 @@
"25"
]
},
"execution_count": 14,
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
Expand Down Expand Up @@ -1019,7 +1075,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 16,
"metadata": {},
"outputs": [
{
Expand Down Expand Up @@ -1070,7 +1126,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 17,
"metadata": {},
"outputs": [
{
Expand All @@ -1096,7 +1152,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 18,
"metadata": {},
"outputs": [
{
Expand Down Expand Up @@ -1173,7 +1229,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 19,
"metadata": {},
"outputs": [
{
Expand All @@ -1199,7 +1255,7 @@
")"
]
},
"execution_count": 18,
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
Expand Down Expand Up @@ -1268,7 +1324,7 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
Expand Down Expand Up @@ -1314,7 +1370,7 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 21,
"metadata": {},
"outputs": [
{
Expand Down Expand Up @@ -1361,7 +1417,7 @@
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 22,
"metadata": {},
"outputs": [
{
Expand Down
Loading