forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] support TextVQA dataset (open-mmlab#1596)
* [Support] Suport TextVQA dataset * add folder structure * fix readme
- Loading branch information
1 parent
bc3c4a3
commit 3a277ee
Showing
4 changed files
with
112 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from collections import Counter | ||
from typing import List | ||
|
||
import mmengine | ||
from mmengine.dataset import BaseDataset | ||
|
||
from mmpretrain.registry import DATASETS | ||
|
||
|
||
@DATASETS.register_module() | ||
class TextVQA(BaseDataset): | ||
"""TextVQA dataset. | ||
val image: | ||
https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip | ||
test image: | ||
https://dl.fbaipublicfiles.com/textvqa/images/test_images.zip | ||
val json: | ||
https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json | ||
test json: | ||
https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_test.json | ||
folder structure: | ||
data/textvqa | ||
├── annotations | ||
│ ├── TextVQA_0.5.1_test.json | ||
│ └── TextVQA_0.5.1_val.json | ||
└── images | ||
├── test_images | ||
└── train_images | ||
Args: | ||
data_root (str): The root directory for ``data_prefix``, ``ann_file`` | ||
and ``question_file``. | ||
data_prefix (str): The directory of images. | ||
question_file (str): Question file path. | ||
ann_file (str, optional): Annotation file path for training and | ||
validation. Defaults to an empty string. | ||
**kwargs: Other keyword arguments in :class:`BaseDataset`. | ||
""" | ||
|
||
def __init__(self, | ||
data_root: str, | ||
data_prefix: str, | ||
ann_file: str = '', | ||
**kwarg): | ||
super().__init__( | ||
data_root=data_root, | ||
data_prefix=dict(img_path=data_prefix), | ||
ann_file=ann_file, | ||
**kwarg, | ||
) | ||
|
||
def load_data_list(self) -> List[dict]: | ||
"""Load data list.""" | ||
annotations = mmengine.load(self.ann_file)['data'] | ||
|
||
data_list = [] | ||
|
||
for ann in annotations: | ||
|
||
# ann example | ||
# { | ||
# 'question': 'what is the brand of...is camera?', | ||
# 'image_id': '003a8ae2ef43b901', | ||
# 'image_classes': [ | ||
# 'Cassette deck', 'Printer', ... | ||
# ], | ||
# 'flickr_original_url': 'https://farm2.static...04a6_o.jpg', | ||
# 'flickr_300k_url': 'https://farm2.static...04a6_o.jpg', | ||
# 'image_width': 1024, | ||
# 'image_height': 664, | ||
# 'answers': [ | ||
# 'nous les gosses', | ||
# 'dakota', | ||
# 'clos culombu', | ||
# 'dakota digital' ... | ||
# ], | ||
# 'question_tokens': | ||
# ['what', 'is', 'the', 'brand', 'of', 'this', 'camera'], | ||
# 'question_id': 34602, | ||
# 'set_name': 'val' | ||
# } | ||
|
||
data_info = dict(question=ann['question']) | ||
data_info['question_id'] = ann['question_id'] | ||
data_info['image_id'] = ann['image_id'] | ||
|
||
img_path = mmengine.join_path(self.data_prefix['img_path'], | ||
ann['image_id'] + '.jpg') | ||
data_info['img_path'] = img_path | ||
|
||
data_info['question_id'] = ann['question_id'] | ||
|
||
if 'answers' in ann: | ||
answers = [item for item in ann.pop('answers')] | ||
count = Counter(answers) | ||
answer_weight = [i / len(answers) for i in count.values()] | ||
data_info['gt_answer'] = list(count.keys()) | ||
data_info['gt_answer_weight'] = answer_weight | ||
|
||
data_list.append(data_info) | ||
|
||
return data_list |