forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request open-mmlab#1780 from timerring/dev
[CodeCamp2023-338] New Version of config Adapting Swin Transformer Algorithm
- Loading branch information
Showing
24 changed files
with
735 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
# This is a BETA new format config file, and the usage may change recently. | ||
from mmengine.dataset import DefaultSampler | ||
|
||
from mmpretrain.datasets import (CUB, CenterCrop, LoadImageFromFile, | ||
PackInputs, RandomCrop, RandomFlip, Resize) | ||
from mmpretrain.evaluation import Accuracy | ||
|
||
# dataset settings | ||
dataset_type = CUB | ||
data_preprocessor = dict( | ||
num_classes=200, | ||
# RGB format normalization parameters | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
# convert image from BGR to RGB | ||
to_rgb=True, | ||
) | ||
|
||
train_pipeline = [ | ||
dict(type=LoadImageFromFile), | ||
dict(type=Resize, scale=510), | ||
dict(type=RandomCrop, crop_size=384), | ||
dict(type=RandomFlip, prob=0.5, direction='horizontal'), | ||
dict(type=PackInputs), | ||
] | ||
|
||
test_pipeline = [ | ||
dict(type=LoadImageFromFile), | ||
dict(type=Resize, scale=510), | ||
dict(type=CenterCrop, crop_size=384), | ||
dict(type=PackInputs), | ||
] | ||
|
||
train_dataloader = dict( | ||
batch_size=8, | ||
num_workers=2, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root='data/CUB_200_2011', | ||
split='train', | ||
pipeline=train_pipeline), | ||
sampler=dict(type=DefaultSampler, shuffle=True), | ||
) | ||
|
||
val_dataloader = dict( | ||
batch_size=8, | ||
num_workers=2, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root='data/CUB_200_2011', | ||
split='test', | ||
pipeline=test_pipeline), | ||
sampler=dict(type=DefaultSampler, shuffle=False), | ||
) | ||
val_evaluator = dict(type=Accuracy, topk=(1, )) | ||
|
||
test_dataloader = val_dataloader | ||
test_evaluator = val_evaluator |
89 changes: 89 additions & 0 deletions
89
mmpretrain/configs/_base_/datasets/imagenet_bs64_swin_256.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
# This is a BETA new format config file, and the usage may change recently. | ||
from mmengine.dataset import DefaultSampler | ||
|
||
from mmpretrain.datasets import (CenterCrop, ImageNet, LoadImageFromFile, | ||
PackInputs, RandAugment, RandomErasing, | ||
RandomFlip, RandomResizedCrop, ResizeEdge) | ||
from mmpretrain.evaluation import Accuracy | ||
|
||
# dataset settings | ||
dataset_type = ImageNet | ||
data_preprocessor = dict( | ||
num_classes=1000, | ||
# RGB format normalization parameters | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
# convert image from BGR to RGB | ||
to_rgb=True, | ||
) | ||
|
||
bgr_mean = data_preprocessor['mean'][::-1] | ||
bgr_std = data_preprocessor['std'][::-1] | ||
|
||
train_pipeline = [ | ||
dict(type=LoadImageFromFile), | ||
dict( | ||
type=RandomResizedCrop, | ||
scale=256, | ||
backend='pillow', | ||
interpolation='bicubic'), | ||
dict(type=RandomFlip, prob=0.5, direction='horizontal'), | ||
dict( | ||
type=RandAugment, | ||
policies='timm_increasing', | ||
num_policies=2, | ||
total_level=10, | ||
magnitude_level=9, | ||
magnitude_std=0.5, | ||
hparams=dict( | ||
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')), | ||
dict( | ||
type=RandomErasing, | ||
erase_prob=0.25, | ||
mode='rand', | ||
min_area_ratio=0.02, | ||
max_area_ratio=1 / 3, | ||
fill_color=bgr_mean, | ||
fill_std=bgr_std), | ||
dict(type=PackInputs), | ||
] | ||
|
||
test_pipeline = [ | ||
dict(type=LoadImageFromFile), | ||
dict( | ||
type=ResizeEdge, | ||
scale=292, # ( 256 / 224 * 256 ) | ||
edge='short', | ||
backend='pillow', | ||
interpolation='bicubic'), | ||
dict(type=CenterCrop, crop_size=256), | ||
dict(type=PackInputs), | ||
] | ||
|
||
train_dataloader = dict( | ||
batch_size=64, | ||
num_workers=5, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root='data/imagenet', | ||
split='train', | ||
pipeline=train_pipeline), | ||
sampler=dict(type=DefaultSampler, shuffle=True), | ||
) | ||
|
||
val_dataloader = dict( | ||
batch_size=64, | ||
num_workers=5, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root='data/imagenet', | ||
split='val', | ||
pipeline=test_pipeline), | ||
sampler=dict(type=DefaultSampler, shuffle=False), | ||
) | ||
val_evaluator = dict(type=Accuracy, topk=(1, 5)) | ||
|
||
# If you want standard test, please manually configure the test dataset | ||
test_dataloader = val_dataloader | ||
test_evaluator = val_evaluator |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
# This is a BETA new format config file, and the usage may change recently. | ||
from mmpretrain.models import (CrossEntropyLoss, GlobalAveragePooling, | ||
ImageClassifier, LinearClsHead, SwinTransformer) | ||
|
||
# model settings | ||
model = dict( | ||
type=ImageClassifier, | ||
backbone=dict( | ||
type=SwinTransformer, | ||
arch='base', | ||
img_size=384, | ||
stage_cfgs=dict(block_cfgs=dict(window_size=12))), | ||
neck=dict(type=GlobalAveragePooling), | ||
head=dict( | ||
type=LinearClsHead, | ||
num_classes=1000, | ||
in_channels=1024, | ||
loss=dict(type=CrossEntropyLoss, loss_weight=1.0), | ||
topk=(1, 5))) |
19 changes: 19 additions & 0 deletions
19
mmpretrain/configs/_base_/models/swin_transformer_v2_base.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
# This is a BETA new format config file, and the usage may change recently. | ||
from mmpretrain.models import (GlobalAveragePooling, ImageClassifier, | ||
LabelSmoothLoss, LinearClsHead, | ||
SwinTransformerV2) | ||
|
||
# model settings | ||
model = dict( | ||
type=ImageClassifier, | ||
backbone=dict( | ||
type=SwinTransformerV2, arch='base', img_size=384, drop_path_rate=0.2), | ||
neck=dict(type=GlobalAveragePooling), | ||
head=dict( | ||
type=LinearClsHead, | ||
num_classes=1000, | ||
in_channels=1024, | ||
init_cfg=None, # suppress the default init_cfg of LinearClsHead. | ||
loss=dict(type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'), | ||
cal_acc=False)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
# This is a BETA new format config file, and the usage may change recently. | ||
from mmengine.optim import CosineAnnealingLR, LinearLR | ||
from torch.optim import SGD | ||
|
||
# optimizer | ||
optim_wrapper = dict( | ||
optimizer=dict( | ||
type=SGD, lr=0.01, momentum=0.9, weight_decay=0.0005, nesterov=True)) | ||
|
||
# learning policy | ||
param_scheduler = [ | ||
# warm up learning rate scheduler | ||
dict( | ||
type=LinearLR, | ||
start_factor=0.01, | ||
by_epoch=True, | ||
begin=0, | ||
end=5, | ||
# update by iter | ||
convert_to_iter_based=True), | ||
# main learning rate scheduler | ||
dict( | ||
type=CosineAnnealingLR, | ||
T_max=95, | ||
by_epoch=True, | ||
begin=5, | ||
end=100, | ||
) | ||
] | ||
|
||
# train, val, test setting | ||
train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1) | ||
val_cfg = dict() | ||
test_cfg = dict() | ||
|
||
# NOTE: `auto_scale_lr` is for automatically scaling LR | ||
# based on the actual training batch size. | ||
auto_scale_lr = dict(base_batch_size=64) |
35 changes: 35 additions & 0 deletions
35
mmpretrain/configs/swin_transformer/swin_base_16xb64_in1k.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
# This is a BETA new format config file, and the usage may change recently. | ||
from mmengine.config import read_base | ||
from mmengine.model import ConstantInit, TruncNormalInit | ||
|
||
from mmpretrain.models import CutMix, LabelSmoothLoss, Mixup | ||
|
||
with read_base(): | ||
from .._base_.datasets.imagenet_bs64_swin_224 import * | ||
from .._base_.default_runtime import * | ||
from .._base_.models.swin_transformer_base import * | ||
from .._base_.schedules.imagenet_bs1024_adamw_swin import * | ||
|
||
# model settings | ||
model.update( | ||
backbone=dict(img_size=224, drop_path_rate=0.5, stage_cfgs=None), | ||
head=dict( | ||
init_cfg=None, # suppress the default init_cfg of LinearClsHead. | ||
loss=dict( | ||
type=LabelSmoothLoss, | ||
label_smooth_val=0.1, | ||
mode='original', | ||
loss_weight=0), | ||
topk=None, | ||
cal_acc=False), | ||
init_cfg=[ | ||
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.), | ||
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.) | ||
], | ||
train_cfg=dict( | ||
augments=[dict(type=Mixup, alpha=0.8), | ||
dict(type=CutMix, alpha=1.0)])) | ||
|
||
# schedule settings | ||
optim_wrapper = dict(clip_grad=dict(max_norm=5.0)) |
12 changes: 12 additions & 0 deletions
12
mmpretrain/configs/swin_transformer/swin_base_16xb64_in1k_384px.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
# This is a BETA new format config file, and the usage may change recently. | ||
from mmengine.config import read_base | ||
|
||
with read_base(): | ||
from .._base_.datasets.imagenet_bs64_swin_384 import * | ||
from .._base_.default_runtime import * | ||
from .._base_.models.swin_transformer_base import * | ||
from .._base_.schedules.imagenet_bs1024_adamw_swin import * | ||
|
||
# schedule settings | ||
optim_wrapper = dict(clip_grad=dict(max_norm=5.0)) |
18 changes: 18 additions & 0 deletions
18
mmpretrain/configs/swin_transformer/swin_large_16xb64_in1k.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
# This is a BETA new format config file, and the usage may change recently. | ||
from mmengine.config import read_base | ||
|
||
with read_base(): | ||
from .._base_.datasets.imagenet_bs64_swin_224 import * | ||
from .._base_.default_runtime import * | ||
from .._base_.models.swin_transformer_base import * | ||
from .._base_.schedules.imagenet_bs1024_adamw_swin import * | ||
|
||
# model settings | ||
model.update( | ||
backbone=dict(arch='large', img_size=224, stage_cfgs=None), | ||
head=dict(in_channels=1536), | ||
) | ||
|
||
# schedule settings | ||
optim_wrapper = dict(clip_grad=dict(max_norm=5.0)) |
18 changes: 18 additions & 0 deletions
18
mmpretrain/configs/swin_transformer/swin_large_16xb64_in1k_384px.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
# This is a BETA new format config file, and the usage may change recently. | ||
from mmengine.config import read_base | ||
|
||
with read_base(): | ||
from .._base_.datasets.imagenet_bs64_swin_384 import * | ||
from .._base_.default_runtime import * | ||
from .._base_.models.swin_transformer_base import * | ||
from .._base_.schedules.imagenet_bs1024_adamw_swin import * | ||
|
||
# model settings | ||
model.update( | ||
backbone=dict(arch='large'), | ||
head=dict(in_channels=1536), | ||
) | ||
|
||
# schedule settings | ||
optim_wrapper = dict(clip_grad=dict(max_norm=5.0)) |
49 changes: 49 additions & 0 deletions
49
mmpretrain/configs/swin_transformer/swin_large_8xb8_cub_384px.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
# This is a BETA new format config file, and the usage may change recently. | ||
from mmengine.config import read_base | ||
from mmengine.hooks import CheckpointHook, LoggerHook | ||
from mmengine.model import PretrainedInit | ||
from torch.optim.adamw import AdamW | ||
|
||
from mmpretrain.models import ImageClassifier | ||
|
||
with read_base(): | ||
from .._base_.datasets.cub_bs8_384 import * | ||
from .._base_.default_runtime import * | ||
from .._base_.models.swin_transformer_base import * | ||
from .._base_.schedules.cub_bs64 import * | ||
|
||
# model settings | ||
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/swin-transformer/convert/swin-large_3rdparty_in21k-384px.pth' # noqa | ||
|
||
model.update( | ||
backbone=dict( | ||
arch='large', | ||
init_cfg=dict( | ||
type=PretrainedInit, checkpoint=checkpoint, prefix='backbone')), | ||
head=dict(num_classes=200, in_channels=1536)) | ||
|
||
# schedule settings | ||
optim_wrapper = dict( | ||
optimizer=dict( | ||
_delete_=True, | ||
type=AdamW, | ||
lr=5e-6, | ||
weight_decay=0.0005, | ||
eps=1e-8, | ||
betas=(0.9, 0.999)), | ||
paramwise_cfg=dict( | ||
norm_decay_mult=0.0, | ||
bias_decay_mult=0.0, | ||
custom_keys={ | ||
'.absolute_pos_embed': dict(decay_mult=0.0), | ||
'.relative_position_bias_table': dict(decay_mult=0.0) | ||
}), | ||
clip_grad=dict(max_norm=5.0), | ||
) | ||
|
||
default_hooks = dict( | ||
# log every 20 intervals | ||
logger=dict(type=LoggerHook, interval=20), | ||
# save last three checkpoints | ||
checkpoint=dict(type=CheckpointHook, interval=1, max_keep_ckpts=3)) |
Oops, something went wrong.